Спираль архимеда что это такое


Построение Спираль Архимеда. Наглядный чертеж.

Построение Спираль Архимеда начинается с представления что это такое?

Представляет собой плоскую кривую линию, движущаяся равномерно с постоянным углом по кривой траектории от центра до радиуса окружности.

Алгоритм построение Спираль Архимеда:

1.) Построение начинается с окружности необходимого диаметра.

2.) Делится окружность на 12 равных частей и нумеруется.

3.) Горизонтальная линия также делится на 12 равных отрезков.

4.) Чертятся вспомогательные окружности, таким образом, чтобы начало имело с номера на горизонтальной прямой и заканчивалось на отрезке окружности с той же цифрой.

5.) Полученные точки соединяются плавной линией (с помощью инструмента лекало).

Смотрите чертеж Спираль Архимеда. Диаметр окружности 12 см.

Также посмотрите видео:

chertegik.ru

Как построить параметризированную геометрию спирали Архимеда

Спирали Архимеда широко используются при построении геометрий для катушек индуктивности, спиральных теплообменников и микрогидродинамических устройств. В этой заметке мы покажем, как построить спираль Архимеда, используя аналитические выражения и их производные для задания необходимых кривых. Сначала мы создадим двухмерную геометрию, а затем, задав нужную толщину, преобразуем её в трёхмерную с помощью операции Extrude (Вытягивание).

Что такое спираль Архимеда?

Широко распространённые в природе спирали или завитки используются во многих инженерных конструкциях. Например, в электротехнике и электронике с помощью проводников спиралевидной формы наматывают катушки индуктивности или проектируют геликоидные антенны. В машиностроении спирали используются при проектировании пружин, косозубых цилиндрических передач или даже механизмов часов, один из которых изображён ниже.

Пример спирали Архимеда, которая используется в часовом механизме. Изображение представлено Greubel Forsey. Доступно по лицензии CC BY-SA 3.0 из Wikimedia Commons.

В данной статье мы разберём только один вид спирали, а именно, спираль Архимеда, которая изображена в механизме выше. Спираль Архимеда – это особый вид спирали с постоянным расстоянием между витками. Благодаря этому свойству она широко распространена при проектировании катушек и пружин.

Уравнение спирали Архимеда в полярной системе координат записывается, как:

r=a+b\theta

где a и b — параметры, определяющие начальный радиус спирали и расстояние между витками, которое равно 2 \pi b. Обратите внимание, что спираль Архимеда также иногда называют арифметической спиралью. Это имя связывают с арифметической зависимостью расстояния от начала кривой до точек спирали, находящихся на одной радиальной линии.

Задание параметризированной геометрии спирали Архимеда

Теперь, когда вы уже знаете, что такое спираль Архимеда, давайте приступим к параметризации и созданию геометрии в COMSOL Multiphysics.

Спираль Архимеда может быть задана как в полярных, так и в декартовых координатах.

Для начала необходимо преобразовать уравнение спирали из полярной системы координат в декартову и выразить каждое уравнение в параметрической форме:

\begin{align*} x_{component}=rcos(\theta) \\ y_{component}=rsin(\theta) \end{align*}

После преобразования уравнения спирали в параметрической форме в декартовой системе координат примут вид:

\begin{align*} x_{component}=(a+b\theta)cos(\theta) \\ y_{component}=(a+b\theta)sin(\theta) \end{align*}

В COMSOL Multiphysics необходимо определить набор параметров, с помощью которых будем задавать геометрию спирали. В нашем случае — это начальный и конечный радиусы спирали a_{initial} и a_{final}, соответственно, и количество витков n. Показатель роста спирали b находится, как:

b=\frac{a_{final}-a_{initial}}{2 \pi n}

Также необходимо определить начальный и конечный углы спирали — theta_0 и theta_f, соответственно. Давайте с них и начнём — theta_0=0 и theta_f=2 \pi n. Исходя из заданной информации, определяем параметры для построения геометрии спирали.

Параметры, которые используются для построения геометрии спирали.

Начнём наше построение, выбрав трёхмерную задачу (3D Component) и создадим Work Plane (Рабочую плоскость) в разделе Geometry (Геометрия). В геометрии для Work Plane добавляем Parametric Curve (Параметрическую кривую) и записываем параметрические уравнения, описанные выше, чтобы задать двухмерную геометрию спирали Архимеда. Данные уравнения можно сразу вписать в соответствующие поля во вкладке Expression либо сначала можно задать каждое уравнение отдельной Аналитической функцией (Analytic function):

\begin{align*} X_{fun}=(a+bs)cos(s) \\ Y_{fun}=(a+bs)sin(s) \\ \end{align*}

Выражение для X-компоненты уравнения спирали Архимеда, заданное аналитической функцией.

Аналитическая функция затем может использоваться в качестве выражения в узле Parametric Curve. Во вкладке Parameter задаём параметр s от начального угла, theta_0, до его конечного значения, theta_f=2 \pi n.

Настройки для Parametric Curve (Параметрической кривой).

Как только вы зададите все параметры и нажмёте на кнопку «Build Selected», будет построена кривая, изображённая на скриншоте выше. Теперь давайте зададим толщину спирали, чтобы получить твёрдотельную (solid) двухмерную фигуру.

До этого момента параметрами нашей кривой были начальный (a_{initial}) и конечный (a_{final}) радиусы и количество витков n. Теперь мы хотим добавить ещё один – толщину спирали.

Ещё раз напомним главное свойство спирали — расстояние между витками постоянно и равно 2 \pi b. Что эквивалентно \frac{a_{final}-a_{initial}}{n}. Чтобы добавить толщину в наши уравнения, представляем расстояние между витками суммой толщины спирали и зазора thick+gap.

Расстояние между витками определяется толщиной спирали и величиной зазора.

Чтобы ввести параметр толщины и сохранить постоянное расстояние между витками, последнее перепишем, как:

\begin{align*} distance=\frac{a_{initial}-a_{final}}{n} \\ gap=distance-thick \end{align*}

После этого выражаем показатель роста спирали через толщину:

\begin{align*} distance=2\pi b \\ b=\frac{gap+thick}{2\pi} \end{align*}

Также нужно выразить конечный угол спирали через начальный угол и конечный радиус:

\begin{align*} \theta_{final}=2 \pi n \\ a_{final}=\text{total distance}+a_{initial} \\ a_{final}=2 \pi bn+a_{initial} \\ n=\frac{a_{final}-a_{initial}}{2 \pi b} \\ \theta_{final}=\frac{2 \pi (a_{final}-a_{initial})}{2 \pi b} \\ \theta_{final}=\frac{a_{final}-a_{initial}}{b} \end{align*}

Хотите задать отличный от нуля начальный угол спирали? Если так, то его надо будет добавить в выражение для определения конечного угла: theta_f=\frac{a_{final}-a_{initial}}{b}+theta_0.

Дублирование кривой спирали дважды со смещением на -\frac{thick}{2} и +\frac{thick}{2} по отношению к начальной кривой позволяет построить спираль заданной толщины. Чтобы правильно расположить внутреннюю и внешнюю спирали, необходимо убедиться, что начала данных кривых перпендикулярны линии, на которой расположены их начальные точки. Это можно сделать, домножив расстояние смещения \pm\frac{thick}{2} на единичный вектор, расположенный по нормали к начальной кривой спирали. Уравнения векторов нормали в параметрическом виде:

n_x=-\frac{dy}{ds} \quad \text{and} \quad n_y=\frac{dx}{ds}

где s — это параметр, используемый в узле Parametric Curve. Чтобы получить нормированные единичные вектора, необходимо эти выражения разделить на длину нормали:

\sqrt{(dx/ds)^2+(dy/ds)^2 }

Обновленные параметрические уравнения спирали Архимеда со смещением:

\begin{align*} x_{component}=(a+bs)cos(s)-\frac{dy/ds}{\sqrt{(dx/ds)^2+(dy/ds)^2}}\frac{thick}{2} \\ y_{component}=(a+bs)sin(s)+\frac{dx/ds}{\sqrt{(dx/ds)^2+(dy/ds)^2}}\frac{thick}{2} \end{align*}

Записывать такие длинные выражения довольно неудобно, поэтому введём следующие обозначения:

\begin{align*} N_x=-\frac{dy/ds}{\sqrt{(dx/ds)^2+(dy/ds)^2}} \\ N_y=\frac{dx/ds}{\sqrt{(dx/ds)^2+(dy/ds)^2 }} \end{align*}

где N_x и N_y определяются аналитическими функциями в COMSOL Multiphysics, аналогично X_{fun} и Y_{fun} в первом примере. Внутри функции используется оператор производной, d(f(x),x), как показано на скриншоте ниже.

Примеры оператора производной, который используется в аналитической функции

Функции X_{fun}, Y_{fun}, N_x, и N_y могут быть использованы в выражениях для задания параметрической кривой, как с одной стороны:

\begin{align*} x_{lower}=X_{fun}(s)+N_x(s)\frac{thick}{2} \\ y_{lower}=Y_{fun}(s)+N_y(s)\frac{thick}{2} \end{align*}

Так и с другой:

\begin{align*} x_{upper}=X_{fun}(s)-N_x(s)\frac{thick}{2} \\ y_{upper}=Y_{fun}(s)-N_y(s)\frac{thick}{2} \end{align*}

Выражения для второй смещённой параметрической кривой.

Чтобы соединить концы, добавим ещё две параметрические кривые, используя незначительные изменения уравнений выше. Для кривой, которая будет соединять спираль в центре, необходимо задать X_{fun}, Y_{fun}, N_x, и N_y для начального значения угла, theta. Для кривой, которая будет соединять концы, необходимо задать конечное значение theta. Исходя из этого, уравнения кривой в центре:

\begin{align*} X_{fun}(theta_0)+s\cdot N_x(theta_0)\cdot\frac{thick}{2} \\ Y_{fun}(theta_0)+s\cdot N_y(theta_0)\cdot\frac{thick}{2} \end{align*}

Уравнения кривой на конце:

\begin{align*} X_{fun}(theta_f)+s\cdot N_x(theta_f)\cdot\frac{thick}{2} \\ Y_{fun}(theta_f)+s\cdot N_y(theta_f)\cdot\frac{thick}{2} \end{align*}

В этих уравнениях параметр s изменяется от -1 до 1, как показано на скриншоте ниже.

Уравнения кривой, соединяющей спираль в центре.

В итоге, мы имеем пять кривых, которые определяют осевую линию спирали и её четыре стороны. Осевую линию можно отключить (функция disable) или даже удалить, так как она не является необходимой. Добавив узел Convert to Solid, создаём единый геометрический объект. Последним шагом является вытягивание данного профиля с помощью операции Extrude и создание трёхмерного объекта.

Полная геометрическая последовательность и вытянутая (экструдированная) трёхмерная геометрия спирали.

Краткие выводы по моделированию спирали Архимеда в COMSOL Multiphysics

В данной заметке мы разобрали основные шаги по созданию параметрической спирали Архимеда. С помощью данной модели вы можете сами экспериментировать с различными значениями параметров, а также попробовать решить с использованием данной параметризации оптимизационную задачу. Надеемся, что данная статья оказалась полезной и вы будете применять данную технику в своих последующих моделях.

Дополнительные ресурсы по проектированию и расчёту спиралей

www.comsol.ru

Архимедова спираль - это... Что такое Архимедова спираль?

Архимедова спираль — спираль, плоская кривая, траектория точки M (см Рис. 1), которая равномерно движется вдоль луча OV с началом в O, в то время как сам луч OV равномерно вращается вокруг O. Другими словами, расстояние ρ = OM пропорционально углу поворота φ луча OV. Повороту луча OV на один и тот же угол соответствует одно и то же приращение ρ.

Уравнение Архимедовой спирали в полярной системе координат записывается так:

(1)  

где k — смещение точки M по лучу r, при повороте на угол равный одному радиану.

Рис. 1

Повороту прямой на соответствует смещение a = |BM| = |MA| = . Число a — называется шагом спирали. Уравнение Архимедовой спирали можно переписать так:

При вращении луча против часовой стрелки получается правая спираль (синяя линия) (см. Рис. 2), при вращении — по часовой стрелке — левая спираль (зелёная линия).

Рис. 2

Обе ветви спирали (правая и левая) описываются одним уравнением (1). Положительным значениям соответствует правая спираль, отрицательным — левая спираль. Если точка M будет двигаться по прямой UV из отрицательных значений через центр вращения O и далее в положительные значения, вдоль прямой UV, то точка M опишет обе ветви спирали.

Луч OV, проведённый из начальной точки O, пересекает спираль бесконечное число раз — точки B, M, A и так далее. Расстояния между точками B и M, M и A равны шагу спирали . При раскручивании спирали, расстояние от точки O до точки M стремится к бесконечности, при этом шаг спирали остаётся постоянным (конечным), то есть, чем дальше от центра, тем ближе витки спирали, по форме, приближаются к окружности.

Площадь сектора

Площадь сектора OCM:

,

  

где , , .

При , , , формула (2) даёт площадь фигуры, ограниченной первым витком спирали и отрезком CO:

,

где — площадь круга, радиус которого равен шагу спирали — .

Все эти свойства и уравнения были открыты Архимедом.

Вычисление длины дуги Архимедовой спирали

Бесконечно малый отрезок дуги равен (см. Рис.3):

Рис. 3. Вычисление длины дуги Архимедовой спирали ,

где — приращение радиуса , при приращении угла на . Для бесконечно малого приращения угла , справедливо:

.

Поэтому:

так как и

или

.

Длина дуги равна интегралу от по в пределах от до :

.

dic.academic.ru

Спираль Архимеда

Архимед (287 г. до н. э. -- 212г. до н. э.) -- древнегреческий математик, физик и инженер из Сиракуз (остров Сицилия). Он сделал множество открытий в геометрии. Заложил основы механики, гидростатики, автор ряда важных изобретений.

Архимедова спираль была открыта Архимедом. Это произошло в III веке до н.э., когда он экспериментировал с компасом. Он тянул стрелку компаса с постоянной скоростью, вращая сам компас по часовой стрелке. Получившаяся кривая была спиралью, которая сдвигались на ту же величину, на которую поворачивался компас, и между витками спирали сохранялось одно и то же расстояние.

Архимедову спираль использовали в древности, как наилучший способ определения площади круга. С ее помощью был улучшен древний греческий метод нахождения площади круга через измерение длины окружности. Спираль дала возможность более точного измерения длины окружности, а следовательно, и площади круга.

В III веке да нашей эры Архимед на основе своей спирали изобрёл винт, который успешно применяли для передачи воды в оросительные каналы из водоёмов, расположенных ниже. Позже на основе винта Архимеда создали шнек («улитку»). Его очень известная разновидность - винтовой ротор в мясорубке. Шнек используют в механизмах для перемешивания материалов различной консистенции.

Определение спирали Архимеда

Кривую можно рассматривать как траекторию точки, равномерно движущейся по лучу, исходящему из полюса, в то время как этот луч равномерно вращается вокруг полюса.

Представим себе циферблат часов с длинной стрелкой. Стрелка движется по окружности циферблата. А по стрелке в это время перемещается с постоянной скоростью маленький жучок. Траектория движения жучка представляет собой спираль Архимеда.

Построение спирали Архимеда

Чтобы понять, как получается спираль Архимеда, отметим на чертеже точку, которая является центром спирали Архимеда.

Построим из центра спирали окружность, радиус которой равен шагу спирали. Шаг спирали Архимеда равен расстоянию, которое проходит точка по поверхности круга за один его полный оборот.

Разделим окружность на несколько равных частей с помощью прямых линий. На первой линии откладываем одно деление, на второй-два деления, на третьей-три деления и т. д. Затем чертим соответствующее число дуг из центра окружности, проходящих через первое деление,2-ое и т. д.

Расстояния витков правой спирали, считая по лучу, равны ,а расстояния соседних витков, равны.

Уравнение Архимедовой спирали имеет вид:

,

Page 2

Логарифмическая спираль была впервые описана Декартом (1638 г., опубликовано в 1657 г). Декарт искал кривую, обладающую свойством, подобным свойству окружности, так чтобы касательная в каждой точке образовывала с радиус-вектором в каждой точке один и тот же угол. Отсюда и название равноугольная. Он показал, что это условие равносильно тому, что полярные углы для точек кривой пропорциональны логарифмам радиус-векторов. Отсюда и второе название: логарифмическая спираль. Независимо от Декарта она была открыта Э. Торричелли в 1644 г. Свойства логарифмической спирали исследовал Я. Бернулли (1692 г.). Её название предложено П. Вариньоном (1704 г.).

Определение логарифмической спирали

Логарифмическая спираль - кривая, которая пересекает все лучи, выходящие из одной точки О, под одним и тем же углом.

Уравнение кривой в полярных координатах:

,

где коэффициенты.

Расстояние между витками растет с увеличением угла.

Построение логарифмической спирали

гиперболический спираль архимед логарифмический

Логарифмическую спираль можно построить с помощью так называемого «золотого прямоугольника», т.е. такого, у которого отношение сторон равно золотому сечению:

,

Если от золотого прямоугольника отрезать квадрат со стороной, равной меньшей стороне прямоугольника, то снова получим золотой прямоугольник, но меньших размеров. Если продолжить этот процесс далее, а затем соединить плавной кривой вершины квадратов, то получим логарифмическую спираль. Точки, делящие стороны прямоугольников в среднем и крайнем отношении, лежат на логарифмической спирали, закручивающейся внутрь.

I. Найдем длину дуги логарифмической спирали

0? ? 2, используя формулу:

Итак,

II. Вычислим площадь фигуры, ограниченной первым витком логарифмической спирали, используя формулу:

Итак,

Основные свойства логарифмической спирали

1. Угол, составляемый касательной в произвольной точке логарифмической спирали с радиус-вектором точки касания, постоянный и зависит лишь от параметра .

2.Параметр m определяет, насколько плотно и в каком направлении закручивается спираль. В предельном случае, когда =0 спираль вырождается в окружность радиуса . Наоборот, когда стремится к бесконечности ( спираль стремится к прямой линии. Угол, дополняющий до 90°, называется наклоном спирали.

3. Размер витков логарифмической спирали постепенно увеличивается, но их форма остаётся неизменной.

4. Если угол возрастает или убывает в арифметической прогрессии, то возрастает (убывает) в геометрической.

5. Поворачивая полярную ось вокруг полюса, можно добиться полного уничтожения параметра a и привести уравнение к виду r=, где -- новый параметр.

6. Радиус кривизны в каждой точке спирали пропорционален длине дуги спирали от ее начала до этой точки.

Логарифмическая спираль в природе

Логарифмическая спираль - единственный тип спирали, не меняющей своей формы при увеличении размеров. Это свойство объясняет, почему логарифмическая спираль так часто встречается в природе.

Царство животных предоставляет нам примеры спиралей раковин, улиток и моллюсков.

Все эти формы указывают на природное явление: процесс накручивания связан с процессом роста. В самом деле, раковина улитки - это не больше, не меньше, чем конус, накрученный на себя. Если мы внимательно посмотрим на рост раковин и рогов, то заметим еще одно любопытное свойство: рост происходит только на одном конце. И это свойство сохраняет форму полностью уникальную среди кривых в математике, форму логарифмической, или равноугольной спирали.

Галактики, штормы и ураганы дают впечатляющие примеры логарифмических спиралей.

И наконец, в любом месте, где есть природное явление, в котором сочетаются расширение или сжатие с вращением появляется логарифмическая спираль.

В растительном мире примеры еще более бросаются в глаза, потому что у растения может быть бесконечное число спиралей, а не только одна спираль у каждого.

Расположение семечек в любом подсолнечнике, чешуек в любом ананасе и другие разнообразные виды растений, простые ромашки… дают нам настоящий парад переплетающихся спиралей.

Паук плетет паутину спиралеобразно.

Логарифмическая спираль в технике

Применения логарифмической спирали в технике основаны на свойстве этой кривой пересекать все свои радиус-векторы под одним и тем же углом.

Так, вращающиеся ножи в различных режущих машинах имеют профиль, очерченный по дуге спирали, благодаря чему угол резания (угол между лезвием ножа и направлением его скорости вращения) остается постоянным вдоль всей кромки подвижного ножа, что обеспечивает меньший его износ.

Page 3

Гиперболическая спираль -- плоская трансцендентная кривая, уравнение которой в полярных координатах имеет вид:

Кривая состоит из двух ветвей, симметричных относительно прямой (см. рис.). Начало координат является асимптотической точкой. Асимптота - прямая, параллельная полярной оси и отстоящая от нее на расстоянии .

Гиперболическая спираль получается при движении точки по вращающейся прямой таким образом, что ее расстояние от центра вращения всегда будет обратно пропорционально углу поворота прямой, измеренному от начального положения.

I.Найдем площадь сектора :

Итак,

II.Вычислим длину дуги гиперболической спирали, используя формулу:

=

Итак, длина дуги между точками M1(, ) и M2(, ) имеет вид:

1. Большой энциклопедический словарь «Математика»,

Гл. редактор Ю.В. Прохоров, Научное изд-во «Большая Российская Энциклопедия», М.: 1998

2. http://mathemlib.ru

3. http://www.phisiki.com/

4. Маркушевич А.И., Замечательные кривые, М., 1978 г.

5. http://hijos.ru/

6. Википедия

7. Фихтенгольц Г.М., Курс дифференциального и интегрального исчисления; том I,II- М.: Наука, 1969

8. Математическая энциклопедия. Главный редактор И.М. Виноградов, т.3 - М.: «Советская энциклопедия», 1982

9. Графики функций. Справочник. Вирченко Н.А., Ляшко И.И., Швецов К.И.,1979 г.

studbooks.net

Последовательность Фибоначчи и спираль Архимеда

 Сакральная геометрия. Энергетические коды гармонииПрокопенко Иоланта

Последовательность Фибоначчи и спираль Архимеда

Плотная пища жен Фибоначчи

Только на пользу им шла, не иначе.

Весили жены, согласно молве,

Каждая – как предыдущие две.

Джеймс Линдон

Числовой ряд Фибоначчи – загадочная последовательность, воспетая в романах Дэна Брауна. В чем же уникальность и необычность этого ряда чисел? Почему несколько цифр, ставшие в ряд, привлекают так много внимания?

Числа Фибоначчи – это элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Числовой ряд Фибоначчи выглядит следующим образом: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 и т. д.

Эта последовательность была известна в Древней Индии, ее широко использовали в стихосложении. Чуть позже ее использовал на Западе в своем труде «Liber Abaci» (1202) Леонардо Пизанский, более известный как Фибоначчи. Он рассматривал развитие идеальной популяции кроликов со следующей точки зрения:

– Изначально имеется пара кроликов (1 новая пара кроликов);

– В первом месяце пара производит на свет еще одну пару (1 новая пара кроликов);

– Во втором месяце каждая пара производит на свет еще по одной паре. Первая пара погибает (2 новые пары кроликов);

– В третьем месяце вторая пара и две новые пары кроликов порождают на свет три новые пары. Старая пара погибает (3 новые пары кроликов), и т.д.

Фибоначчи определил закономерным тот факт, кто каждая пара кроликов за всю жизнь порождает еще две пары, а затем погибает.

К чему мы об этом говорим? Казалось бы, ничего нового Фибоначчи не открыл, он напомнил миру о таком явлении, как золотое сечение (см. главу «Золотое сечение. Божественная пропорция»).

Однако числа Фибоначчи с легкостью можно найти в природе, в жизни, которая нас окружает. Будто все в мире построено одним великим архитектором. Числа Фибоначчи можно найти на стебле любого растения или в количестве лепестков.

Распределение листков тысячелистника по последовательности Фибоначчи

Последовательность Фибоначчи тесно связана с определением спирали Архимеда. Спираль Архимеда – спираль с равномерным увеличением шага и витка. Рассмотрим «золотой прямоугольник».

«Золотой прямоугольник»

Как видим, части в нем располагаются согласно вышеупомянутой последовательности. К тому же, если провести линии через углы этих квадратов в порядке возрастания, то мы получим не что иное, как уже известную спираль Архимеда.

Спираль Архимеда

В природе существует множество примеров того, как гармонично может воплощаться последовательность Фибоначчи. (Семена подсолнуха, сосновые шишки, ячейки ананаса, лепестки цветов.)

Молекулу ДНК человека составляют две переплетенные вертикально спирали длиной 34 и шириной 21. Недаром Гёте называл спираль «кривой жизни», ведь 21 и 34 – это цифры, следующие друг за другом в последовательности Фибоначчи.

Расположение семян подсолнуха

Паутина, построенная по принципу спирали Архимеда

Ракушка улитки, построенная по принципу спирали Архимеда

ДНК человека, построенная по принципу последовательности Фибоначчи

Числа Фибоначчи встречаются и в космосе, ведь Млечный путь и многие другие галактики построены по модели спирали Архимеда.

Млечный путь, одна из самых крупных спиралей Архимеда

Следующая глава

Глава 8. Кальдера и священная спираль Мы ищем не отдыха – преображенья. Мы проходим друг в друга, как в двери. Мы сливаемся, скрещиваемся, уходим и возвращаемся, как волны, из сердцевины яблока, глаза мандалы, пустоты в цветке розы, безграничного круга с центром в

СПИРАЛЬ ГЛАСТОНБЕРИ ***В 1944 году ирландский бизнесмен Джеффри Расселл увидел необыкновенно яркий сон. Проснувшись, он немедленно перенес на бумагу образ, все еще стоявший у него перед глазами. Это был спиральный символ, состоящий из одной линии, закрученной в семь витков.

ДВОЙНАЯ СПИРАЛЬ Книжку профессора Джеймса Д. Уотсона «Двойная спираль» легко найти в любом книжном магазине. Его французский перевод был выпущен издательством «Robert Laffont». Существуют также несколько английских изданий в твёрдом переплёте и карманное издание в мягкой

Глава 9 Спираль перерождений Реинкарнация является самым спорным духовным  явлением нашего времени. Реинкарнация — один из наиболее ценных уроков колдовства. Знание о том, что эта жизнь только одна из многих, и что, когда физическое тело умирает, мы не прекращаем своего

СПИРАЛЬ ГЛАСТОНБЕРИ *** В 1944 году ирландский бизнесмен Джеффри Расселл увидел необыкновенно яркий сон. Проснувшись, он немедленно перенес на бумагу образ, все еще стоявший у него перед глазами. Это был спиральный символ, состоящий из одной линии, закрученной в семь витков.

Спираль Вернемся же к квадрату, в который можно вписать человеческое тело, с вертикалью, делящей его пополам, и диагональю. Воспользуйтесь циркулем, чтобы повернуть диагональ, и завершите прямоугольник, продлив две оставшихся линии до их пересечения. Таким образом вы

Спираль Фибоначчи Математик средневековья Леонардо Фибоначчи открыл определенный порядок, или последовательность, в которой происходит рост растений. Вот эта последовательность: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 и так далее. Я уже упоминал о ней при обсуждении роста растений.

8 Согласование полярностей бинарной последовательности и последовательности Фибоначчи Последовательность Фибоначчи и Спираль ФибоначчиДля того, чтобы понять, почему эти восемь спиралей вокруг Канона да Винчи не являются спиралями Золотого Сечения, и для понимания

Глава 4 Спираль качеств Если мы говорим о том, как стать Магом, то надо понимать следующее: эволюция человека происходит по чёткой последовательности. Нет прыжков из касты купцов в касту Магов. По ступеням придётся подниматься, наступая на каждую.Проблема в том, что нас

Индивидуальная спираль исцеления Как бы нам ни хотелось найти «совершенную» систему питания, созданную кем-либо из великих, эти надежды, увы, несбыточны. Я много времени потратил, испытывая различные «системы», пока не понял: совершенная система – та, которую вы

Глава № 9 Фибоначчи, золотое сечение и пентакль Последовательность Фибоначчи — не просто случайная числовая схема, придуманная этим итальянским математиком. Она является плодом осмысления пространственных отношений, имеющих место в природе и впоследствии получившими

Спираль. Виток материи жизни Спиральность – одна из характерных признаков всех организмов, как проявление самой сущности жизни. И. Гёте Амбивалентный, неоднозначный сакральный символ. Спираль одновременно воплощает в себе символику жизни и смерти, развития на

Спираль Архимеда и закон октав Искусство – и я имею в виду подлинное, доброе искусство – зиждется, помимо всего прочего, на принципах баланса, динамики, местоположения и композиции. Эти элементы должны находиться в гармонии, взаимодействовать друг с другом, чтобы

Построение спирали Архимеда Заданный шаг t спирали Архимеда делят на несколько, например на восемь, равных частей. Из конца О отрезка проводят окружность R = t и делят ее на столько же равных частей, на сколько был разделен шаг t.На первом луче путем проведения дуги радиусом

Последовательность Фибоначчи С историей золотого сечения связано имя математика Леонардо из Пизы, известного под именем Фибоначчи (сын Боначчи). Он был самым знаменитым математиком Средневековья. В 1202 году вышел в свет его труд «Книга об абаке» (счетной доске), где были

Медитация на спираль Медитация со спиралью потребует времени, проводить ее надо в течение часа. Лучше для медитации выбрать утренние или дневные часы выходного дня. Создайте в комнате для медитирования полумрак, зажгите свечу. Сядьте прямо и постарайтесь отбросить все

esoterics.wikireading.ru

Спираль Архимеда и закон октав

Спираль Архимеда и закон октав

Искусство – и я имею в виду подлинное, доброе искусство – зиждется, помимо всего прочего, на принципах баланса, динамики, местоположения и композиции. Эти элементы должны находиться в гармонии, взаимодействовать друг с другом, чтобы искусство обладало глубоким смыслом, чтобы смогло прикоснуться к сокровенной сути наших душ.

Терри Гудкайнд. Закон девяток

Спиралью Архимеда называется плоская кривая, полученная как след точки, движущейся равномерно поступательно от неподвижной точки О по выходящему из нее и равномерн[по вращающемуся вокруг точки О лучу (радиусу).

Архимедова спираль – спираль, плоская кривая, траектория точки M, которая равномерно движется вдоль луча OV с началом в O, в то время как сам луч OV равномерно вращается вокруг O. Другими словами, расстояние ? = OM пропорционально углу поворота луча OV. Повороту луча OV на один и тот же угол соответствует одно и то же приращение ?.

Чертеж спирали Архимеда

• точка О называется полюсом спирали;

• отрезок ОА называется шагом t спирали;

• отрезок KL – нормалью спирали, а прямая MN, перпендикулярная к нормали, называется касательной;

• точка К может находиться в любом месте спирали,

• точку L находят путем построения, для чего точку К соединяют прямой с точкой О и в точке О проводят перпендикуляр к отрезку КО, который пересечет в точке L окружность, проведенную из центра О диаметром D = t/3,14.

Следующая глава

СПИРАЛЬ ГЛАСТОНБЕРИ ***В 1944 году ирландский бизнесмен Джеффри Расселл увидел необыкновенно яркий сон. Проснувшись, он немедленно перенес на бумагу образ, все еще стоявший у него перед глазами. Это был спиральный символ, состоящий из одной линии, закрученной в семь витков.

ДВОЙНАЯ СПИРАЛЬ Книжку профессора Джеймса Д. Уотсона «Двойная спираль» легко найти в любом книжном магазине. Его французский перевод был выпущен издательством «Robert Laffont». Существуют также несколько английских изданий в твёрдом переплёте и карманное издание в мягкой

СПИРАЛЬ ГЛАСТОНБЕРИ *** В 1944 году ирландский бизнесмен Джеффри Расселл увидел необыкновенно яркий сон. Проснувшись, он немедленно перенес на бумагу образ, все еще стоявший у него перед глазами. Это был спиральный символ, состоящий из одной линии, закрученной в семь витков.

Спираль Вернемся же к квадрату, в который можно вписать человеческое тело, с вертикалью, делящей его пополам, и диагональю. Воспользуйтесь циркулем, чтобы повернуть диагональ, и завершите прямоугольник, продлив две оставшихся линии до их пересечения. Таким образом вы

Спираль Фибоначчи Математик средневековья Леонардо Фибоначчи открыл определенный порядок, или последовательность, в которой происходит рост растений. Вот эта последовательность: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 и так далее. Я уже упоминал о ней при обсуждении роста растений.

Закон чистого сознания, или закон всеединства Источником всего творения является чистое сознание, ищущее выражения неявного через явное. И когда мы осознаем, что наше истинное я – это я – чистое сознание, мы объединяемся с силой, которая проявляет все в нашей

Закон причины и следствия, или закон кармы Каждое действие порождает силу энергии, которая возвращается к нам в виде подобной силы (т. е. что посеешь, то и пожнешь).Когда мы выбираем действия, которые приносят счастье и успех другим, наша карма приносит нам плоды – счастье

Глава 8 Закон равновесия – главный космический закон благоденствия Гармония, принцип золотой середины… Сейчас многие считают его изобретением Аристотеля, однако он гораздо старше. И представляет собой на самом деле один из главных космических законов благоденствия –

Глава 6 Закон Притяжения — самый могущественный закон Вселенной Каждая мысль обладает вибрационной природой, каждая мысль излучает сигнал и притягивает обратно точно такой же. Мы называем этот процесс Законом Притяжения. Закон Притяжения гласит: подобное притягивает

Руны – закон рита – закон духа и крови 425 = Дух не говорит языком человеческим (33) = Найти путь в Вечность через Знания (30) = «Числовые коды». Книга 2. Крайон Иерархия 11.12. 2011 г.Я Есмь Что Я Есмь!Я Есмь Эль Мория! Приветствую Тебя, Владыка!Светлана, человек, который осознал

Последовательность Фибоначчи и спираль Архимеда Плотная пища жен Фибоначчи Только на пользу им шла, не иначе. Весили жены, согласно молве, Каждая – как предыдущие две. Джеймс Линдон Числовой ряд Фибоначчи – загадочная последовательность, воспетая в романах Дэна

Построение спирали Архимеда Заданный шаг t спирали Архимеда делят на несколько, например на восемь, равных частей. Из конца О отрезка проводят окружность R = t и делят ее на столько же равных частей, на сколько был разделен шаг t.На первом луче путем проведения дуги радиусом

Гипноз в семь октав Тайны человеческой психики далеко еще не раскрыты. Помогает раскрыть и выявить особые измененные состояния сознания человека – гипноз. Через его применение у человека проявляются большинство сверхъестественных феноменов.Гипнотизер имеет

Глава 6 Закон притяжения – самый могущественный закон вселенной Каждая мысль обладает вибрационной природой, каждая мысль излучает сигнал и притягивает обратно точно такой же. Мы называем этот процесс Законом Притяжения. Закон Притяжения гласит: подобное притягивает

Медитация на спираль Медитация со спиралью потребует времени, проводить ее надо в течение часа. Лучше для медитации выбрать утренние или дневные часы выходного дня. Создайте в комнате для медитирования полумрак, зажгите свечу. Сядьте прямо и постарайтесь отбросить все

esoterics.wikireading.ru


Смотрите также