Хромосома что это такое


Хромосомы

Содержание:

  • Что такое хромосомы
  • История открытия хромосом
  • Хромосомная теория наследственности
  • Строение хромосом
  • Формы и виды хромосом
  • Функции хромосом
  • Набор хромосом
  • Хромосомный набор человека
  • Генетические болезни, связанные с хромосомами
  • Хромосомы, видео
  • Что такое хромосомы

    Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

    Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

    История открытия хромосом

    Еще в середине позапрошлого XIX века многие биологи изучая в микроскопе строение клеток растений и животных, обратили внимание на тонкие нити и мельчайшие кольцевидные структуры в ядре некоторых клеток. И вот немецкий ученый Вальтер Флеминг применив анилиновые красители для обработки ядерных структур клетки, что называется «официально» открывает хромосомы. Точнее обнаруженное вещество было им названо «хроматид» за его способность к окрашиванию, а термин «хромосомы» в обиход чуть позже (в 1888 году) ввел еще один немецкий ученый – Генрих Вайлдер. Слово «хромосома» происходит от греческих слов «chroma» – окраска и «somo» – тело.

    Хромосомная теория наследственности

    Разумеется, история изучения хромосом не закончилась на их открытии, так в 1901-1902 годах американские ученые Уилсон и Сатон, причем независимо друг от друга, обратили внимание на сходство в поведении хромосом и менделеевских факторов наследственности – генов. В результате ученые пришли к заключению, что гены находятся в хромосомах и именно посредством их из поколения в поколения, от родителей к детям передается генетическая информация.

    В 1915-1920 годам участие хромосом в передаче генов было доказано на практике в целой серии опытов, сделанных американским ученым Морганом и сотрудниками его лаборатории. Им удалось локализировать в хромосомах мухи-дрозофилы несколько сот наследственных генов и создать генетические карты хромосом. На основе этих данных была создана хромосомная теория наследственности.

    Строение хромосом

    Строение хромосом разнится в зависимости от вида, так метафазная хромосома (образующаяся в стадии метафазе при митозном делении клетки) состоит из двух продольных нитей – хроматид, которые соединяются в точке, именуемой центромерой. Центромера – это участок хромосомы, который отвечает за расхождение сестринских хроматид в дочерние клетки. Она же делит хромосому на две части, названные коротким и долгим плечом, она же отвечает за деление хромосомы, так как именно в ней содержится специальное вещество – кинетохор, к которому крепятся структуры веретена деления.

    Тут на картинке показано наглядное строение хромосомы: 1. хроматиды, 2. центромера, 3. короткое плечо хроматид, 4. длинное плечо хроматид. На концах хроматид располагаются теломеры, специальные элементы, которые защищают хромосому от повреждений и препятствуют слипанию фрагментов.

    Формы и виды хромосом

    Размеры хромосом растений и животных значительно различаются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в диапазоне от 1,5 до 10 микрон. В зависимости от вида хромосомы отличаются и ее способности к окрашиванию. В зависимости от расположения центромеры различают такие формы хромосом:

    • Метацентрические хромосомы, для которых характерно срединное расположение центромеры.
    • Субметацентрические, для них характерно неравномерное расположение хроматид, когда одно плечо более длинное, а второе более короткое.
    • Акроцентрические или палочковидные. У них центромера расположена практически в самом конце хромосомы.

    Функции хромосом

    Основные функции хромосом, как для животных, так и для растений и вообще всех живых существ – передача наследственной, генетической информации от родителей к детям.

    Набор хромосом

    Значение хромосом столь велико, что их количество в клетках, а также особенности каждой хромосомы определяют характерный признак того или иного биологического вида. Так, например, у мухи-дрозофилы в наличии 8 хромосом, у обезьян – 48, а хромосомный набор человека составляет 46 хромосом.

    В природе существует два основных типа набора хромосом: одиночный или гаплоидный (содержится в половых клетках) и двойной или диплоидный. Диплоидный набор хромосом имеет парную структуру, то есть вся совокупность хромосом состоит из хромосомных пар.

    Хромосомный набор человека

    Как мы уже написали выше, клетки человеческого организма содержат 46 хромосом, которые объединены в 23 пары. Все вместе они и составляют хромосомный набор человека. Первые 22 пары человеческих хромосом (их называют аутосомами) являются общими как для мужчин, так и для женщин, и лишь 23 пара – половых хромосом – разнится у разных полов, она же определяет половую принадлежность человека. Совокупность всех пар хромосом также называется кариотипом.

    Такой вид имеет хромосомный набор человека, 22 пары двойных диплоидных хромосом содержат всю нашу наследственную информацию, и последняя пара различается, у мужчин она состоит из пары условных X и Y половых хромосом, в то время как у женщин в наличии две хромосомы Х.

    Аналогичную структуру хромосомного набора имеют и все животные, только количество неполовых хромосом у каждого из них свое.

    Генетические болезни, связанные с хромосомами

    Нарушение в работе хромосом, или даже само их неправильно количество является причиной многих генетических заболеваний. Например, синдрома Дауна появляется из-за наличия лишней хромосомы в хромосомном наборе человека. А такие генетические болезни как дальтонизм, гемофилия вызваны сбоями в работе имеющихся хромосом.

    Хромосомы, видео

    И в завершение интересно образовательное видео про хромосомы.

    Эта статья доступна на английском языке – Chromosomes.

    Хромосома — количество, строение, функции, типы

    Что такое хромосома? Это основа строения каждого организма.

    Именно она определяет генетику организма: от расположенности к различным заболеваниям до цвета глаз.

    Сколько хромосом у людей, сколько их должно быть в норме, какие существуют хромосомные болезни и что является причиной их появления — об этом и многом другом в материале данной статьи.

    Оглавление:

    • Что такое хромосомы
    • История открытия хромосом
    • Из чего состоит хромосома
    • Типы хромосом
    • Функции хромосом
    • Набор хромосом
    • Количество хромосом у человека
    • Болезни генетики, связанные с хромосомами
    • Заключение

    Что такое хромосомы

    Хромосомы – это отдельные цепи ДНК (дезоксирибонуклеиновой кислоты), которые свернуты в двойную спираль и образуют плотные нитевидные кусочки. Поэтому их еще называют нитевидными молекулами.

    История открытия хромосом

    Классическая биология подразумевает, что открытие хромосомы неразрывно связано с открытиями клетки и ядра. Все находки стали возможными только после изобретения микроскопа Левенгуком в 1674 году.

    В 1831 году Роберт Браун первым определил, что в клетках растений есть клеточное ядро. Он опубликовал множество научных трудов по этому вопросу.

    В 1838 М. Дж. Шлейдена выдвинул неверную эпигенетическую теорию. Она утверждает, что клеточное ядро создается из жидкости клетки. Это послужило классической противоположностью открытию Эдуарда ван Бенедена в 1883 году, что нитевидные молекулы – это отдельные объекты.

    В 1842 году Карл Вильгельм фон Нагели обнаружил субклеточные структуры. Он наблюдал «идиоплазму», сеть струноподобных тел. Ученый ошибочно предполагал, что они образуют взаимосвязанную сеть во всем организме.

    В 1873 году Шнайдер описал косвенное деление ядра с помощью «Kernfigur» (ядерная фигура) и «ахроматического веретена». В 1883 году Эдуард ван Бенеден обнаружил, что после оплодотворения половых клеток нематоды Ascaris megalocephala не сливаются с нитевидными молекулами ядра ооцита. Следовательно, они являются отдельными сущностями.

    Правила Менделя были основаны на суждениях Бенедена, но эта связь была обнаружена только через несколько лет.

    Определение «хромосома» было придумано Уолдиером в 1888 году. Термин происходит от греческих слов «цвет» и «тело». Термин имеет такое название, потому что хромосома обладает способностью окрашиваться красителями.

    А уже в 1960 году была создана первая Денверская международная классификация, которая помогает в построении кариограммы человека — совокупности всех хромосом диплоидного набора клетки.

    Из чего состоит хромосома

    У хромосом выявлено нитевидное строение, обнаруженное в ядрах как животных, так и растений. Они сделаны из белка и одной молекулы дезоксирибонуклеиновой кислоты.

    ДНК – это хранилище генетических инструкций, позволяющее производить белки и клеточные процессы, которые необходимы для жизни и передаются из поколения в поколение. Все фрагменты ДНК состоят из последовательностей генов, содержащих инструкции для развития, размножения и, в конечном итоге, гибели каждой клетки. Каждая из цепей ДНК может содержать от 10000 до 100000000 нуклеотидов.

    ДНК разбивается на одноцепочечные полинуклеотидные цепи, чтобы обнажить генные последовательности, которые можно скопировать в РНК (мРНК, рибонуклеиновая кислота). Эта мРНК имеет четыре нуклеотидных основания, расположенных в различных комбинациях из трех, и похожа на ДНК.

    Рибосомы читают эти три основанные на нуклеотиде последовательности и переводят их, чтобы сформировать аминокислотную последовательность белка. Каждая последовательность кодирует одну из 20 аминокислот.

    Сначала аминокислоты образуют длинную цепь, называемую полипептидной цепью. Затем эта цепь претерпевает конформационные и структурные изменения, сворачиваясь и складываясь над собой, пока не будет достигнута окончательная сложная структура белка.

    Нитевидные молекулы также содержат ДНК-связанные белки или гистоны, которые консолидируют и стабилизируют ДНК и регулируют ее функции.

    Они могут иметь конденсированную ДНК, организованную вокруг гистоновых белков с образованием хроматина. Хроматин позволяет встраивать длинные цепи ДНК в ядро. При делении они образуют плотные небольшие нитевидные структуры, которые необходимо реплицировать, прежде чем они будут равномерно разделены на две новые клетки, чтобы каждая из них имела одинаковое количество нитевидных молекул.

    Детальный процесс образования и структура представлена на рисунке ниже.

    Когда клетки тела делятся (митоз), образуется метафазная нитевидная молекула (у строения дополнительно имеется вторичная перетяжка и спутник). Две копии 23 хромосом передаются на каждую дочернюю клетку, давая им обоим полный набор из 46 хромосом.

    Когда гаметы (яйцеклетки или сперматозоиды) делятся (мейоз), только половина передается на дочерние, так как они образуют полный набор при слиянии с другой гаметой во время оплодотворения, после чего полученная зигота будет иметь 23 пары нитевидных молекул с половиной от каждого родителя.

    Типы хромосом

    Классификация зависит от положения центромеры (первичной перетяжки). Она необходима для процесса деления и обеспечивает точное разделение нитевидных молекул.

    Исследования показали, что нитевидные молекулы без первичной перетяжки выделяются случайным образом и в конечном итоге теряются из клеток. Рисунок с подписями наглядно отображает расположение центромеры.

    Существует четыре основных типа:

    1. Метацентрические — в этом случае центромеры расположены в центре, так что оба участка имеют одинаковую длину. Человеческие нитевидные молекулы 1 и 3 являются метацентрическими.
    2. Субметацентрические — центромера слегка сдвинута от центра, что приводит к небольшой асимметрии в длине плеч. Хромосомы человека с 4 по 12 являются субметацентрическими.
    3. Акроцентрические — в этом типе первичная перетяжка сильно смещена от центра, что приводит к одному очень длинному и одному очень короткому плечу. Человеческие хромосомы 13, 15, 21 и 22 являются акроцентрическими.
    4. Телоцентрические — первичная перетяжка находится в самом конце структуры. Люди не обладают телоцентрическими нитевидными молекулами, но они встречаются у животных, например, у мышей.

    Функции хромосом

    Поскольку генетический материал передается от родителей к ребенку, они ответственны за содержание инструкций, которые делают потомство уникальным, в то же время сохраняя черты от родителей. У большинства организмов одна хромосома наследуется от матери, а другая наследуется от отца.

    Крайне важно, чтобы определенные клетки, такие как репродуктивные, имели правильное количество нитевидных молекул для нормального функционирования.

    Структура помогает гарантировать то, что ДНК остается плотно обернутой вокруг белков, иначе молекулы ДНК были бы слишком большими.

    Организмы растут, подвергаясь клеточному делению, чтобы произвести новые клетки и заменить старые, изношенные. Во время этого деления ДНК должна оставаться неповрежденной и сохранять равномерное распределение. Они играют роль в этом процессе, позволяя создать точную репликацию ДНК.

    Набор хромосом

    Существует два типа эукариотических клеток – это гаплоидные и диплоидные. Основное отличие заключается в количестве хромосомных наборов, обнаруженных в ядре.

    Гаплоидные клетки – это клетки, которые содержат только один полный хромосомный набор. Наиболее распространенным типом гаплоидных клеток являются гаметы или половые клетки. Гаплоидные клетки продуцируются мейозом. Это генетически разнообразные клетки, которые используются при половом размножении.

    Когда гаплоидные клетки от родительских доноров собираются и оплодотворяются, потомство имеет полный набор и становится диплоидной клеткой.

    Диплоидные клетки имеют две гомологичные (парные) копии каждой нитевидной молекулы, унаследованные от матери и отца. Все млекопитающие являются организмами этого типа, за исключением нескольких видов.

    Диплоидные клетки обозначены как 2n = 2x, а гаплоидные клетки обозначены как n, где n – количество нитевидных молекул, а x – число моноплоидов.

    Количество, присутствующее в организме, помогает отличить один вид от другого. Например, антилопа, как и человек, имеет 46, а у макаки 42 хромосомы. 48 хромосом имеют гориллы, а также картофель.

    Но у кого больше всего нитевидных молекул? Ophioglossum reticulatum из семейства папоротниковых имеет их 1260. Есть даже те, у кого 2 хромосомы – это муравьи и аскариды. Ясно, что количество не коррелирует со сложностью организма.

    Фактически количество нитевидных молекул у животных или растений определяется случайно. Количество может уменьшаться в результате слияния или увеличиваться в результате полиплоидии.

    Количество хромосом у человека

    Интересно, сколько пар хромосом у человека? Нормальный набор нитевидных молекул у людей имеет 23 пары, что в сумме составляет 46 штук.

    Исключением являются половые клетки: яйцеклетки и сперматозоиды. У них в наличии лишь одна нитеобразная структура из каждой пары. Каждая из них может иметь от сотен до тысяч генов.

    Женщина обычно владеет двумя X-хромосомами (XX), а у мужчин должно быть по одной X и Y-хромосом (XY). Именно поэтому Y считаются мужскими, а Х – это женские.

    Болезни генетики, связанные с хромосомами

    Аномалии могут влиять на любую нитевидную молекулу, включая и половые.

    Значительные аномалии можно увидеть под микроскопом. Такой тест называется кариотипирование. Меньшие хромосомные аномалии могут быть идентифицированы с помощью специального генетического теста, который сканирует хромосомы человека на наличие отсутствующих или лишних частей.

    Числовые отклонения появляются, если в набор добавляется одна или несколько дополнительных нитевидных молекул (появление одной называется трисомия, а двух копий – тетрасомия) или их недостача (известна как моносомия).

    Трисомия может поражать любую пару, но более распространенными являются ошибки в 21 (синдром Дауна), в 13, а также в 18 парах. Эти аномалии видны с помощью микроскопа при кариотипировании.

    Чем больший возраст у беременной женщины, тем больше вероятность возникновения у плода каких-то аномалий. Когда мужчина становится старше, вероятность зачатия ребенка с аномалией лишь незначительно увеличивается.

    Структурные нарушения происходят, когда есть ошибки в строении какой-то части хромосомы. Бывает, когда часть одной создает неправильное соединение с другой нитевидной молекулой (такое называется транслокацией).

    Порой случается так, что части вообще не существует (это называется делеция) или они дублируются.

    Одни нарушения являются источником гибели эмбриона еще до его рождения. А некоторые отклонения приводят к проблемам, таким как низкий рост, судороги, отсталость в развитии или проблемы с сердцем.

    Незначительные мутации происходят в конкретном гене. Такие аномалии не оказывают влияние на строение и, следовательно, их нельзя увидеть во время проведения анализа кариотипа или другого теста.

    Одни изменения в гене не сопровождаются проблемами, а другие могут вызвать мало или только легкие отклонения. Но некоторые мутации приводят к серьезным расстройствам, таким как серповидноклеточная анемия, гипертихоз и мышечная дистрофия.

    Благодаря стремительному развитию медицины все чаще ученые и медики устанавливают конкретные причины заболеваний человека, которые основаны на генетике. Но остается загадкой, почему возникает множество мутаций.

    Предполагается, что значительная часть заболеваний появляется самопроизвольно. Некоторые факторы в экологии и внешнем мире способны повредить и породить аномалии в генах. Такие факторы называются мутагенами.

    Например, такие мутагены, как радиационное излучение, ультрафиолетовое излучение, лекарства, и химические субстанции, могут привести к некоторым врожденным дефектам или даже к раку.

    Заключение

    Теперь вы знаете, у кого 48 хромосом. Их значение сложно переоценить. Без них, репликация ДНК и последующее разнообразие у людей и других организмов, были бы потеряны. Эти нитевидные молекулы необходимы для управления запутанной ДНК как внутри ядра, так и во время деления клетки.

    По количеству хромосом нельзя определить эволюционную сложность растения или животного. Но генетическая информация, которая в них содержится, определяет, что делает один организм отличным от всех других, населяющих планету.

    Хромосомы - это... Что такое Хромосомы?

    Хромосомный набор (Кариотип) человека (женский).

    Хромосо́мы (греч. χρώμα — цвет и греч. σώμα — тело) — хорошо окрашиваемые включения в ядре эукариотической клетки, которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия все чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.

    Хромосомы эукариот

    Хромосомы эукариот имеют сложное строение. Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков — h2, h3A, h3B, h4 и h5 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов.

    В интерфазе хроматин не конденсирован, но и в это время его нити представляют собой комплекс из ДНК и белков. Макромолекула ДНК обвивает октомеры (структуры, состоящую из восьми белковых глобул) гистоновых белков h3A, h3B, h4 и h5, образуя структуры, названные нуклеосомами. В целом вся конструкция несколько напоминает бусы. Последовательность из таких нуклеосом, соединённых белком h2, называется нуклеофиламентом (nucleofilament), или нуклеосомной нитью, диаметром около 10 нм.

    В ранней интерфазе (фаза G1) основу каждой из будущих хромосом составляет одна молекула ДНК. В фазе синтеза (S) молекулы ДНК вступают в процесс репликации и удваиваются. В поздней интерфазе (фаза G2) основа каждой из хромосом состоит из двух идентичных молекул ДНК, образовавшихся в результате репликации и соединённых между собой в районе центромерной последовательности.

    Перед началом деления клеточного ядра хромосома, представленная на этот момент цепочкой нуклеосом, начинает спирализовываться, или упаковываться, образуя при помощи белка h2 более толстую хроматиновую нить, или хроматиду, (chromatin fiber) диаметром 30 нм. В результате дальнейшей спирализации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, по-прежнему соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьи митоз и мейоз).

    Центромера

    Основная статья: Центромера

    Первичная перетяжка

    X. п., в которой локализуется центромера и которая делит хромосому на плечи.

    Вторичные перетяжки

    Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 13, 14, 15, 21 и 22 хромосомы.

    Типы строения хромосом

    Различают четыре типа строения хромосом:

    • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
    • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
    • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
    • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

    Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода.

    Спутники (сателлиты)

    Сателлит — это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

    Зона ядрышка

    Зоны ядрышка (организаторы ядрышка) — специальные участки, с которыми связано появление некоторых вторичных перетяжек.

    Хромонема

    Хромонема — это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции, термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

    • паранемическую (элементы спирали легко разъединить);
    • плектонемическую (нити плотно переплетаются).

    Хромосомные перестройки

    Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

    Гигантские хромосомы

    Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла. Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов.

    Политенные хромосомы

    Впервые обнаружены Бальбиани в 1881-го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз, кишечника, трахей, жирового тела и мальпигиевых сосудов личинок двукрылых.

    Хромосомы типа ламповых щеток

    Обнаружены Рюккертом в 1892 году. По длине превышают политенные хромосомы, наблюдаются в ооцитах на стадии первого деления мейоза, во время которой процессы синтеза, приводящие к образованию желтка, наиболее интенсивны. Общая длина хромосомного набора в ооцитах некоторых хвостатых амфибий достигает 5900 мкм.

    Бактериальные хромосомы

    Прокариоты (архебактерии и бактерии, в том числе митохондрии и пластиды, постоянно обитающие в клетках большинства эукариот) не имеют хромосом в собственном смысле этого слова. У большинства из них в клетке имеется только одна макромолекула ДНК, замкнутая в кольцо (эта структура получила название нуклеоид). У ряда бактерий обнаружены линейные (не замкнутые в кольцо) макромолекулы ДНК. Помимо нуклеоида или линейных макромолекул, ДНК может присутствовать в цитоплазме прокариотных клеток в виде небольших замкнутых в кольцо молекул ДНК, так называемых плазмид, содержащих обычно незначительное, по сравнению с бактериальной хромосомой, число генов. Состав плазмид может быть непостоянен, бактерии могут обмениваться плазмидами в ходе парасексуального процесса.

    Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида, но гистонов у них не обнаружено.

    Литература

    • Э. де Робертис, В. Новинский, Ф. Саэс Биология клетки. — M.: Мир, 1973. — С. 40-49.

    См. также

    • Кариотип
    • Половые хромосомы
    • Теория наследственности

    Wikimedia Foundation. 2010.

    Хромосом - это... Что такое Хромосом?

    Хромосомный набор (Кариотип) человека (женский).

    Хромосо́мы (греч. χρώμα — цвет и греч. σώμα — тело) — хорошо окрашиваемые включения в ядре эукариотической клетки, которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия все чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.

    Хромосомы эукариот

    Хромосомы эукариот имеют сложное строение. Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков — h2, h3A, h3B, h4 и h5 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов.

    В интерфазе хроматин не конденсирован, но и в это время его нити представляют собой комплекс из ДНК и белков. Макромолекула ДНК обвивает октомеры (структуры, состоящую из восьми белковых глобул) гистоновых белков h3A, h3B, h4 и h5, образуя структуры, названные нуклеосомами. В целом вся конструкция несколько напоминает бусы. Последовательность из таких нуклеосом, соединённых белком h2, называется нуклеофиламентом (nucleofilament), или нуклеосомной нитью, диаметром около 10 нм.

    В ранней интерфазе (фаза G1) основу каждой из будущих хромосом составляет одна молекула ДНК. В фазе синтеза (S) молекулы ДНК вступают в процесс репликации и удваиваются. В поздней интерфазе (фаза G2) основа каждой из хромосом состоит из двух идентичных молекул ДНК, образовавшихся в результате репликации и соединённых между собой в районе центромерной последовательности.

    Перед началом деления клеточного ядра хромосома, представленная на этот момент цепочкой нуклеосом, начинает спирализовываться, или упаковываться, образуя при помощи белка h2 более толстую хроматиновую нить, или хроматиду, (chromatin fiber) диаметром 30 нм. В результате дальнейшей спирализации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, по-прежнему соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьи митоз и мейоз).

    Центромера

    Основная статья: Центромера

    Первичная перетяжка

    X. п., в которой локализуется центромера и которая делит хромосому на плечи.

    Вторичные перетяжки

    Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 13, 14, 15, 21 и 22 хромосомы.

    Типы строения хромосом

    Различают четыре типа строения хромосом:

    • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
    • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
    • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
    • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

    Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода.

    Спутники (сателлиты)

    Сателлит — это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

    Зона ядрышка

    Зоны ядрышка (организаторы ядрышка) — специальные участки, с которыми связано появление некоторых вторичных перетяжек.

    Хромонема

    Хромонема — это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции, термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

    • паранемическую (элементы спирали легко разъединить);
    • плектонемическую (нити плотно переплетаются).

    Хромосомные перестройки

    Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

    Гигантские хромосомы

    Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла. Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов.

    Политенные хромосомы

    Впервые обнаружены Бальбиани в 1881-го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз, кишечника, трахей, жирового тела и мальпигиевых сосудов личинок двукрылых.

    Хромосомы типа ламповых щеток

    Обнаружены Рюккертом в 1892 году. По длине превышают политенные хромосомы, наблюдаются в ооцитах на стадии первого деления мейоза, во время которой процессы синтеза, приводящие к образованию желтка, наиболее интенсивны. Общая длина хромосомного набора в ооцитах некоторых хвостатых амфибий достигает 5900 мкм.

    Бактериальные хромосомы

    Прокариоты (архебактерии и бактерии, в том числе митохондрии и пластиды, постоянно обитающие в клетках большинства эукариот) не имеют хромосом в собственном смысле этого слова. У большинства из них в клетке имеется только одна макромолекула ДНК, замкнутая в кольцо (эта структура получила название нуклеоид). У ряда бактерий обнаружены линейные (не замкнутые в кольцо) макромолекулы ДНК. Помимо нуклеоида или линейных макромолекул, ДНК может присутствовать в цитоплазме прокариотных клеток в виде небольших замкнутых в кольцо молекул ДНК, так называемых плазмид, содержащих обычно незначительное, по сравнению с бактериальной хромосомой, число генов. Состав плазмид может быть непостоянен, бактерии могут обмениваться плазмидами в ходе парасексуального процесса.

    Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида, но гистонов у них не обнаружено.

    Литература

    • Э. де Робертис, В. Новинский, Ф. Саэс Биология клетки. — M.: Мир, 1973. — С. 40-49.

    См. также

    • Кариотип
    • Половые хромосомы
    • Теория наследственности

    Wikimedia Foundation. 2010.

    хромосомы - это... Что такое хромосомы?

    • ХРОМОСОМЫ — (от хромо... и сома), органоиды клеточного ядра, являющиеся носителями генов и определяющие наследств, свойства клеток и организмов. Способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют её в ряду… …   Биологический энциклопедический словарь

    • ХРОМОСОМЫ — [< гр. chroma цвет + soma тело] биол. структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная ИНФОРМАЦИЯ организма. В х. расположены гены (ГЕН). Словарь иностранных слов. Комлев Н.Г., 2006. хромосомы (хромо... гр.… …   Словарь иностранных слов русского языка

    • ХРОМОСОМЫ — (от хромо... и греч. soma тело) структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. Самоудвоение и закономерное распределение хромосом по… …   Большой Энциклопедический словарь

    • ХРОМОСОМЫ — ХРОМОСОМЫ, структуры, несущие генетическую информацию об организме, которая содержится только в ядрах клеток ЭУКАРИОТОВ. Хромосомы нитеобразны, они состоят из ДНК и обладают специфическим набором ГЕНОВ. У каждого вида организмов есть характерное… …   Научно-технический энциклопедический словарь

    • Хромосомы — Структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. В каждой клетке человска присутствует 46 хромосом, разделенных на 23 пары, из которых 22… …   Большая психологическая энциклопедия

    • Хромосомы — * храмасомы * chromosomes самовоспроизводящиеся элементы клеточного ядра, сохраняющие структурнофункциональную индивидуальность и окрашивающиеся основными красителями. Являются главными материальными носителями наследственной информации: генов… …   Генетика. Энциклопедический словарь

    • ХРОМОСОМЫ — ХРОМОСОМЫ, ом, ед. хромосома, ы, жен. (спец.). Постоянная составная часть ядра животных и растительных клеток, носители наследственной генетической информации. | прил. хромосомный, ая, ое. Х. набор клетки. Хромосомная теория наследственности.… …   Толковый словарь Ожегова

    • хромосомы — – структурные элементы клеточного ядра, содержащие гены, организованные в линейном порядке …   Краткий словарь биохимических терминов

    • ХРОМОСОМЫ — ХРОМОСОМЫ, важнейшая составная часть ядра, резко выявляющаяся в процессе кариокинеза благодаря своей способности интенсивно окрашиваться основными красками. Совокупность современных биол. данных заставляет рассматривать X. как носителей… …   Большая медицинская энциклопедия

    • Хромосомы — Схема строения хромосомы в поздней профазе  метафазе митоза. 1 хроматида; 2 центромера; 3 короткое плечо; 4 длинное плечо. Хромосомный набор (Кариотип) человека (женский). Хромосомы (греч. χρώμα  цвет и …   Википедия

    • Хромосомы — (от Хромо... и Сома         органоиды клеточного ядра, совокупность которых определяет основные наследственные свойства клеток и организмов. Полный набор Х. в клетке, характерный для данного организма, называется Кариотипом. В любой клетке тела… …   Большая советская энциклопедия

    хромосома - это... Что такое хромосома?

    • хромосома — хромосома …   Орфографический словарь-справочник

    • хромосома — гетерохромосома, хромозома, аутосома, униваленты, молекула Словарь русских синонимов. хромосома сущ., кол во синонимов: 11 • y хромосома (1) • …   Словарь синонимов

    • хромосома x — Половая хромосома, хромосома, обычно парная в женской клетке, и, как правило, непарная в мужской [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN X chromosome …   Справочник технического переводчика

    • хромосома y — Половая хромосома, половая хромосома, присутствующая исключительно в клетках мужского организма [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN Y chromosome …   Справочник технического переводчика

    • Хромосома — составные элементы клеточного ядра, являющиеся носителями генов... Источник: МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРОГНОЗИРОВАНИЕ, РАННЯЯ ДОКЛИНИЧЕСКАЯ ДИАГНОСТИКА И ПРОФИЛАКТИКА ИНСУЛИНЗАВИСИМОГО САХАРНОГО ДИАБЕТА (N 15) (утв. председателем Комитета… …   Официальная терминология

    • хромосома — ХРОМОСОМА, ХРОМОЗОМА ы, ж. chromosome m., нем. Chromosom. спец. Окрашивающийся элемент делящегося клеточного ядра животных и растительных организмов. БАС 1. Все эти мутации можно связать с известными изменениями хромозом. Природа 1926 1 2 110.… …   Исторический словарь галлицизмов русского языка

    • хромосома — Органелла клеточного ядра у эукариот (у прокариот расположена непосредственно в цитоплазме), являющаяся носителем генетической информации (генов), способная к воспроизведению с сохранением структурно функциональной индивидуальности в ряду… …   Справочник технического переводчика

    • хромосома(ы) — Дискретные единицы генома, несущие множество генов, состоящие из гитонов и очень длинных молекул ДНК [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN chromosome …   Справочник технического переводчика

    • Хромосома — Схема строения хромосомы в поздней профазе  метафазе митоза. 1 хроматида; 2 центромера; 3 короткое плечо; 4 длинное плечо …   Википедия

    • ХРОМОСОМА — Волосатая хромосома. Жарг. угол. 1. Шутл. Женские гениталии. 2. Пренебр. Глупый, недалёкий человек. УМК, 226; ББИ, 272; Балдаев 2, 128; Мокиенко 2003, 138. Жирная хромосома. Жарг. угол. Пренебр. 1. Женщина, страдающая гонореей. 2. Работница… …   Большой словарь русских поговорок


    Смотрите также