Оптопара что это такое


Оптопара принцип работы, оптроны принцип работы

Что такое оптопара – электронно-оптический аппарат (прибор), в котором присутствуют источник светового излучения и приемник того же излучения – фотоприемник, которые в свою очередь связаны конструктивно электрическими и оптическими связями.

В практическом применении наибольшего распространения нашли оптроны (в последнее время приобрели название оптопары), в которых нет электрических связей между приемником и излучателем, а есть только оптическая связь. По сложности составляющих структурных схем в оптронных изделиях различают 2 группы приборов:

  • Оптопара – полупроводниковый оптическо-электронный прибор, в котором оптическая связь обеспечивает изоляцию входа и выхода излучающего и принимающего элементов.
  • Электронно-оптическая микросхема, которая состоит из определенного количества оптопар и так называемых усилителей, которые имеют электрическое соединение с элементами оптронов.

Рисунок 1 – Общий вид оптопары в герметичном корпусе

Принцип работы оптопары

Основное предназначение оптопары заключается в развязке сигнальных цепей гальваническим методом.

Принцип действия оптопары для всех видов фотоприемников и излучательных элементов практически одинаковый и состоит в следующем: формируемый электрический сигнал на входе в излучатель, трансформируется в поток света, который далее принимается фотоэлементом и меняет проводимость последнего – меняя его сопротивление.

Другими словами принцип действия оптрона заключается в двойном трансформировании энергии.

Как работают оптронные устройства

Рассмотрим работу двух видов оптронных устройств: оптическо-электронное и оптическое.

Работа оптическо-электронного аппарата основывается на превращении энергии света в электрическую. Переход энергии происходит при помощи твердого тела и процессов электрических фотоэффектов и сияния («горения», «свечения») при воздействии электрического поля.

Эффект фотоэлектричества означает, что твердое тело может излучать электроны под действием фотонов.

Функционирование оптического устройства происходит при тесном взаимодействии электромагнитного испускания и твердого тела.

Схемы работы оптопар

Применение оптопар (оптронов) позволяет решать множество задач, в частности контроль значений параметров от различных датчиков – уровень, влажность, концентрация и т.д); использование в устройствах автоматики и релейных защит электрооборудования; в диагностических аппаратах. В тех или иных случаях схемы включения оптопар отличны друг от друга.

В качестве примера приведем несколько линейных схем:

Рисунок 2 – Линейная развязка аналогового сигнала с помощью оптронов: 01- оптопары; У1, У2 - усилители

Передача аналоговых сигналов осуществляется по развязанной гальванически цепи с использованием двух одинаковых оптронов, один из которых предназначен осуществляет обратную связь.

Рисунок 3 – Развязка между блоков U1- оптопара; VT1 – транзистор; R2 – сопротивление

Часто применяется в радиотехнике. Выходной сигнал Блока 1 подается на Блок 2 посредством оптопары-диода. В случае использования в Блоке 2 микросхемы с небольшим током на входе, то усилитель не требуется и оптопара-диод работает в фотогенерирующем режиме.

Рисунок 4 – Реле оптоэлектронное

Сигналы от фотоприемника оптопары удобно и практично использовать на воздействие исполнительных механизмов опять же через гальваническую развязку (к примеру: включение света, электродвигателе и другого оборудования).

На рисунке 4 изображена схема полупроводникового разомкнутого реле. Коммутация тока происходит в реле. Транзистор оптопары принимает фотосигнал и открывает VT1, VT2 транзисторы, далее включается нагрузка.

Устройство оптронов

В качестве излучателя используется светодиод, который размещается сверху в металлическом корпусе. В нижней части расположен фотоприемник (кремниевый кристалл). Свободное пространство заполняется затвердевающей массой, которая полностью прозрачна. Последняя покрыта отражателем для направления лучей, чтобы не рассеивались лучи за пределы зоны приемника.

Как правило, вывода оптронов заливаются жидким стеклом. Верхняя и нижняя часть крышки корпуса соединяются при помощи сварки.

Оптрон-резистор практически не отличается от вышеописанной конструкции. В нем используется в качестве излучателя лампа накала, а приемник выполнен из кадмия селенистого.

Применение оптопар

На сегодняшнее время оптопары очень хорошо изучены и широко распространены в различных сферах деятельности. Особое место применения оптронов в схемах для логического согласования различных блоков, которые содержат элементы с исполнительными органами.

Как уже было сказано, ранее оптроны применяются для гальванической развязки в цепях с отличными блоками, преобразования и модуляции импульсов для управления аппаратами, контроля и управления, сигнализации и защиты электрического оборудования и процессов (счетчики, коммутаторы, реле, электрические измерительные устройства).

Достоинства и недостатки оптопар

К основным достоинствам оптронов относится следующее:

  • управление различного рода объектами осуществляется бесконтактно;
  • разнообразие и гибкость управления;
  • абсолютная невосприимчивость и независимость от посторонних электромагнитных волн, что не создает дополнительных помех в работе;
  • возможность использования, как импульса, так и постоянного сигнала;
  • возможность изменения выходного сигнала за счет воздействия на вещество оптоканала (из этого следует возможность использования датчиков различных типов);
  • конструктивная и физическая совместимость с иными электронными и полупроводниковыми аппаратами и приборами;
  • с точки зрения пропускания оптопары, то в низких частотах нет ограничений.

К недостаткам оптронов относятся:

  • достаточно на высоком уровне потребляемая мощность, вызванная двойной трансформацией энергии (электрический ток – световой поток – электрический ток;
  • сравнительно невысокий КПД переходных процессов;
  • снижение качества параметров в процессе длительного времени;
  • высокий уровень шумовых характеристик;
  • достаточно сложно реализовать обратную связь из-за разностью выходных и входных схем.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 23 чел.Средний рейтинг: 4.4 из 5.

Оптопара - это... Что такое Оптопара?

Различные виды оптронов

Оптрон (оптопара) — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов), связанных оптическим каналом и как правило объединённых в общем корпусе. Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.

Свойства и характеристики

В оптроне входная и выходная цепи гальванически развязаны между собой; взаимодействие цепей ограничено паразитными ёмкостями между выводами оптрона. Тепловым воздействием излучателя на фотоприёмник на практике можно пренебречь.

Электрическая прочность (допустимое напряжение между входной и выходной цепями) зависит от конструктивного оформления прибора; для распространённых отечественных DIP-корпусов предельное напряжение между цепями нормируется на 500 или 1000 В, при этом сопротивление изоляции нормируется на уровне 1011 Ом. Реальное напряжение электрического пробоя такого прибора — порядка нескольких киловольт.

Нижняя рабочая частота оптрона не ограничена — оптроны могут работать в цепях постоянного тока. Верхняя рабочая частота оптронов, оптимизированных под высокочастотную передачу цифровых сигналов, достигает сотен МГц. Верхние рабочие частоты линейных оптронов существенно ниже (единицы—сотни кГц). Наиболее медленные оптроны, использующие лампы накаливания, фактически являются эффективными фильтрами низких частот с граничной полосой порядка единиц Гц.

Классификация

По степени интеграции

  • оптопары (или элементарные оптроны) — состоящие из двух и более элементов (в т. ч. собранные в одном корпусе)
  • оптоэлектронные интегральные схемы, содержащие одну или несколько оптопар (с дополнительными компонентами, например, усилителями, или без них).

По типу оптического канала

  • с открытым оптическим каналом
  • с закрытым оптическим каналом

По типу фотоприёмника

В настоящее время в оптоэлектронике можно выделить два направления.

  1. Электронно-оптическое, основанное на принципе фотоэлектрического преобразования, реализуемого в твердом теле внутренным фотоэффектом и электролюминесценцией.
  2. Оптическое, основанное на тонких эффектах взаимодействия твердого тела с электромагнитным излучением и использующее лазерную технику, голографию, фотохимию и т.д.

Существуют два класса оптических элементов, которые можно использовать при создании оптических ЭВМ:

  • Оптроны
  • Квантооптические элементы.

Они являются представителями соответственно электронно-оптического и оптического направлений.

Тип фотоприёмника определяет линейность передаточной функции оптрона. Наиболее линейны и тем самым пригодны для работы в аналоговых устройствах резисторные оптроны, затем — оптроны с приёмным фотодиодом или одиночным биполярным транзистором. Оптроны с составными биполярными транзисторами или полевыми транзисторами используются в импульсных (ключевых, цифровых) устройствах, в которых линейность передачи не требуется. Оптроны с фототиристорами применяются для гальванической развязки схем управления от цепей управления.

Использование

Оптроны имеют несколько областей применения, использующих их различные свойства:

Механическое воздействие

Оптронный координатный счётчик в механической мыши

Оптроны с открытым оптическим каналом, доступным для механического воздействия (перекрытия) используются как датчики во всевозможных детекторах наличия (например, детектор бумаги в принтере), датчиках конца (или начала), счётчиках и дискретных спидометрах на их базе (например, координатные счётчики в механической мыши, ареометры).

Гальваническая развязка

Оптроны используются для гальванической развязки цепей — передачи сигнала без передачи напряжения, для бесконтактного управления и защиты. Некоторые стандартные электрические интерфейсы, например,

Неэлектрическая передача

На принципе оптрона построены такие приспособления как:

  • беспроводные пульты и оптические устройства ввода
  • беспроводные (атмосферно-оптические) и волоконно-оптические устройства передачи аналоговых и цифровых сигналов

Также используются в неразрушающем контроле как датчики аварийных ситуаций. GaP-диоды начинают излучать свет при воздействии на него радиации, а фотоприёмник фиксирует падение его свечения и сообщает о тревоге.

Ссылки

Wikimedia Foundation. 2010.

Оптрон - это... Что такое Оптрон?

Различные виды оптронов

Оптопара (оптрон) — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов), связанных оптическим каналом и как правило объединённых в общем корпусе. Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.

По степени интеграции

  • оптопары (или элементарные оптроны) — состоящие из двух и более элементов (в т. ч. собранные в одном корпусе)
  • оптоэлектронные интегральные схемы, содержащие одну или несколько оптопар (с дополнительными компонентами, например, усилителями, или без них).

По типу оптического канала

  • с открытым оптическим каналом
  • с закрытым оптическим каналом

По типу фотоприёмника

Оптроны с полевым транзистором или фотосимистором иногда именуют оптореле или твердотельным реле.

В настоящее время в оптоэлектронике можно выделить два направления.

  1. Электронно-оптическое, основанное на принципе фотоэлектрического преобразования, реализуемого в твердом теле внутренним фотоэффектом и электролюминесценцией.
  2. Оптическое, основанное на тонких эффектах взаимодействия твердого тела с электромагнитным излучением и использующее лазерную технику, голографию, фотохимию и т.д.

Существуют два класса оптических элементов, которые можно использовать при создании оптических ЭВМ:

  • Оптроны
  • Квантооптические элементы.

Они являются представителями соответственно электронно-оптического и оптического направлений.

Тип фотоприёмника определяет линейность передаточной функции оптрона. Наиболее линейны и тем самым пригодны для работы в аналоговых устройствах резисторные оптроны, затем — оптроны с приёмным фотодиодом или одиночным биполярным транзистором. Оптроны с составными биполярными транзисторами или полевыми транзисторами используются в импульсных (ключевых, цифровых) устройствах, в которых линейность передачи не требуется. Оптроны с фототиристорами применяются для гальванической развязки схем управления от цепей управления.

Использование

Оптроны имеют несколько областей применения, использующих их различные свойства:

Механическое воздействие

Оптронный координатный счётчик в механической мыши

Оптроны с открытым оптическим каналом, доступным для механического воздействия (перекрытия) используются как датчики во всевозможных детекторах наличия (например, детектор бумаги в принтере), датчиках конца (или начала), счётчиках и дискретных спидометрах на их базе (например, координатные счётчики в механической мыши, анемометры).

Гальваническая развязка

Оптроны используются для гальванической развязки цепей — передачи сигнала без передачи напряжения, для бесконтактного управления и защиты. Некоторые стандартные электрические интерфейсы, например, MIDI, предписывают обязательную оптронную развязку. Различают два основных типа оптронов, предназначенных для использования в цепях гальванической развязки: оптопары и оптореле. Основное отличие между ними в том, что оптопары, как правило, используются для передачи информации, а оптореле используется для коммутации сигнальных или силовых цепей.

Оптопары

Транзисторные или интегральные оптопары, как правило, применяются для гальванической развязки сигнальных цепей или цепей с малым током коммутации. В качестве коммутирующего элемента используются биполярные транзисторы, цепи управления цифровыми входами, специализированные цепи (например, для управления силовым MOSFET или IGBT).

Свойства и характеристики оптопар

Электрическая прочность (допустимое напряжение между входной и выходной цепями) зависит от конструктивного оформления прибора. Оптопары гальванической развязки выпускаются в корпусах DIP, SOP, SSOP, Mini flat-lead. Для каждого типа корпусов характерны свои напряжения изоляции. Для того, чтобы обеспечить большие пробивные напряжения, необходимо, чтобы конструкция оптопары имела как можно большие расстояния не только между светодиодом и фотоприемником, но так же как можно большие расстояния по внутренней и по внешней стороне корпуса. Иногда производители выпускают специализированные семейства оптопар, соответствющие международным стандартам безопасности. Эти оптопары характеризуются повышенной электрической прочностью.

Одним из основных параметров, характеризующих транзисторную оптопару, является коэффициент передачи тока. Производители оптопар выполняют сортировку, присваивая в зависимости от коэффициента передачи тот или иной ренкинг, который указывается в наименовании.

Нижняя рабочая частота оптрона не ограничена: оптроны могут работать в цепях постоянного тока. Верхняя рабочая частота оптронов, оптимизированных под высокочастотную передачу цифровых сигналов, достигает сотен МГц. Верхние рабочие частоты линейных оптронов существенно ниже (единицы—сотни кГц). Наиболее медленные оптроны, использующие лампы накаливания, фактически являются эффективными фильтрами нижних частот с граничной полосой порядка единиц Гц.

Шумы транзисторной оптопары

Для транзисторных оптопар характерным является появление шума, связанного с одной стороны наличием проходной емкости между светодиодом и базой транзистора, с другой стороны наличием паразитной емкости между коллектором и базой фототранзистора. Для борьбы с первым типом шумов в конструкцию оптопары вносят специальный экран. Второго типа шумов удается избежать правильно подобрав режимы работы оптопары.

Типы оптопар для гальванической развязки
  • Стандартные со входом по постоянному току
  • Стандартные со входом по переменному току
  • С малыми входными токами
  • С высоким напряжением коллектор-эмиттер
  • Высокоскоростные оптопары
  • Оптопары с изолирующим усилителем
  • Драйверы двигателей и IGBT
Примеры применения оптопар
  • В телекоммуникационном оборудовании
  • В цепях сопряжения с исполнительными устройствами
  • В импульсных источниках питания.
  • В высоковольтных цепях
  • В системах управления двигателями
  • В системах вентиляции и кондиционирования
  • В системах освещения
  • В электросчетчиках
Оптореле

Оптореле (Твердотельные Реле) как правило применяются для коммутации цепей с большим током коммутации. В качестве коммутирующего элемента используется как правило пара встречно включенных MOSFET транзисторов, благодаря чему оптореле способно работать в цепях переменного тока.

Свойства и характеристики оптореле

Оптореле имеют три топологии. Нормально разомкнутые - топология А, нормально замкнутые - топология Б и переключающая - топология С. Нормально разомкнутая топология предполагает замыкание коммутирующей цепи только при подаче управляющего напряжение на светодиод. Нормально замкнутая топология предполагает размыкание коммутирующей цепи при подаче управляющего напряжения на светодиод. Переключающая топология, как следует из названия имеет комбинацию внутри оптореле нормально замкнутых и нормально разомкнутых каналов. Стандартными корпусами для оптореле являются DIP8, DIP6, SOP8, SOP4, Mini flat-lead 4. Аналогично оптопарам оптореле также характеризуются электрической прочностью.

Типы оптореле
  • Стандартные оптореле
  • Оптореле с малым сопротивлением
  • Оптореле с малым СxR
  • Оптореле с малым напряжением смещения
  • Оптореле с высоким напряжением изоляции
Примеры применения оптореле
  • В модемах
  • В измерительных устройствах, IC тестеры
  • Для сопряжения с исполнительными устройствами
  • В автоматических телефонных станциях
  • Счетчики электричества, тепла, газа
  • Коммутаторы сигналов

Неэлектрическая передача

На принципе оптрона построены такие приспособления как:

  • беспроводные пульты и оптические устройства ввода
  • беспроводные (атмосферно-оптические) и волоконно-оптические устройства передачи аналоговых и цифровых сигналов

Также используются в неразрушающем контроле как датчики аварийных ситуаций. GaP-диоды начинают излучать свет при воздействии на них радиации, а фотоприёмник фиксирует возникшее свечение и сообщает о тревоге.

Литература

  • Гребнев, А. К. Гридин В. Н., Дмитриев В. П. Оптоэлектронные элементы и устройства / Под. ред. Ю. В. Гуляева. — М.: Радио и связь, 1998. — 336 с. — ISBN 5-256-01385-8
  • Розеншер, Э., Винтер, Б. Оптоэлектроника = Optoélectronique / Пер. с фр.. — М.: Техносфера, 2004. — 592 с. — ISBN 5-94836-031-8

Ссылки

Оптроны. Виды и устройство. Работа и применение. Особенности

Оптроны (оптопары) — электронные приборы, служащие для преобразования сигнала электрического тока в световой поток. Их световой сигнал передается через каналы оптики, а также происходит обратная передача и преобразование света в электрический сигнал.

Устройство оптрона состоит из излучателя света и преобразователя светового луча (фотоприемника). В качестве излучателя в современных приборах используют светодиоды. В старых моделях применялись маленькие лампочки накаливания. Две составные части оптопары объединены общим корпусом и оптическим каналом.

Виды и устройство оптронов

Существует несколько признаков, по которым можно классифицировать оптопары по группам. При разделении на классы оптронных изделий необходимо учитывать два фактора: тип фотоприемника и особенности общей конструкции прибора.

Первый признак классификации оптронов обуславливается тем, что у всех оптопар на входе расположен светодиод, поэтому возможности функционирования определяются свойствами устройства фотоприемника. Вторым признаком является исполнение конструкции, определяющее особенности использования оптрона.

Применяя такой смешанный принцип разделения, можно выделить три группы оптронных устройств:
  • Элементарные оптопары.
  • Оптоэлектронные микросхемы.
  • Специальные оптопары.
Группы содержат в себе множество видов приборов. Для популярных оптопар применяются некоторые обозначения:
  • Д – диодная.
  • Т – транзисторная.
  • R – резисторная.
  • У – тиристорная.
  • Т2 – со сложным фототранзистором.
  • ДТ – диодно-транзисторная.
  • 2Д (2Т) – диодная дифференциальная, либо транзисторная.
Система свойств оптронных устройств основывается на системе свойств оптопар. Эта система создается из четырех групп свойств и режимов:
  • Характеризует цепь входа оптопары.
  • Характеризует выходные параметры.
  • Объединяет степень действия излучателя на приемник света, и особенности прохода сигнала по оптопаре в качестве компонента связи.
  • Объединяет свойства гальванической развязки.

Основными оптронными параметрами считаются свойства передачи и гальванической развязки. Важной величиной транзисторных и диодных оптронов считается коэффициент передачи тока.

Показателями гальванической развязки оптронов являются:
  • Допустимое пиковое напряжение выхода и входа.
  • Допустимое наибольшее напряжение выхода и входа.
  • Сопротивление развязки.
  • Проходная емкость.
  • Допустимая наибольшая скорость изменения напряжения выхода и входа.

Первый параметр является наиболее важным. По нему определяют электрическую прочность оптрона, а также его способности применения в качестве гальванической развязки.

Эти параметры оптронов применимы и для интегральных микросхем на основе оптопар.

Обозначения оптопар на схемах
 
Диодные оптопары

Оптроны на диодах (рис. а) больше других устройств показывают уровень развития оптронной технологии. По значению коэффициента передачи определяют полезное действие преобразования энергии в оптопаре. Величины временных значений свойств дают возможность определить наибольшие скорости передачи информации. Соединение с диодным оптроном усилителей позволяет создать эффективные устройства передачи информации.

Транзисторные оптроны

Эти приборы (рис. с) отличаются некоторыми свойствами от других видов оптопар. Одним из таких свойств является возможность оптического управления по цепи светодиода, и по основной электрической цепи. Цепь выхода может также действовать в режиме ключа и линейном режиме.

Принцип внутреннего усиления дает возможность получения больших величин коэффициента передачи тока. Поэтому дополнительные усилители не всегда нужны. Важным моментом является небольшая инерционность оптопары, что допускается для многих режимов. Фототранзисторы имеют выходные токи намного больше, чем фотодиоды. Поэтому они применяются для коммутации различных электрических цепей. Все это достигается простой технологией транзисторных оптронов.

Тиристорные оптроны

Такие оптопары (рис. b) имеют большую перспективу для коммутации мощных силовых цепей высокого напряжения: по мощности, нагрузке, скорости они более подходящие, чем Т2 оптопары. Оптроны марки АОУ 103 служат для применения в качестве бесконтактных выключателей в разных электронных схемах: усилителях, управляющих цепях, источниках импульсов и т.д.

Резисторные оптроны

Такие устройства (рис. d) называют фоторезисторами. Они значительно различаются от других типов оптронов своими особенностями конструкции и технологией изготовления. Основным принципом работы фоторезистора является эффект фотопроводности, то есть, изменения величины сопротивления при воздействии светового потока.

Дифференциальные

Рассмотренные выше оптопары способны передавать цифровые данные по гальванической развязке цепи. Важной проблемой является передача аналогового сигнала при помощи оптронов, то есть, создание линейности свойств передачи «вход-выход». Только при наличии таких свойств оптопар можно передавать аналоговые данные по гальванической развязке цепи без цифрового вида и импульсной передачи.

Такая задача решается диодными оптопарами, имеющими качественные шумовые и частотные характеристики. Трудность в решении этой задачи заключается в узком интервале линейности передающей характеристики и линейности диодных оптопар. Такие приборы только начинают прогрессировать в развитии, но за ними большое будущее.

Оптронные микросхемы

Эти микросхемы являются наиболее популярными классами моделей оптронных устройств, благодаря конструктивной и электрической совместимости оптронных микросхем с простыми видами, а также намного большей функциональности. Широкое применение получили коммутационные оптронные микросхемы.

Специальные оптроны

Такие образцы имеют значительные отличия от стандартных моделей приборов. Они выполнены в виде оптопар с оптическим каналом открытого вида. В устройстве таких моделей между фотоприемником и излучателем находится воздушный промежуток. Поэтому, при размещении в нем механических препятствий можно управлять светом и сигналом выхода. Оптроны с открытым каналом оптики используются вместо оптических датчиков, которые фиксируют наличие предметов, их поверхность, поворот, перемещение и т.д.

Применение оптронных устройств
  • Подобные устройства используются для передачи данных между устройствами, которые не соединены электрическими проводами.
  • Также оптопары используются для отображения и получения информации в технике. Отдельно необходимо отметить оптронные датчики, служащие для контроля объектов и процессов, отличающихся по назначению и природе.
  • Заметен прогресс оптронной функциональной микросхемотехники, которая ориентирована на решение различных задач по преобразованию и накоплению данных.
  • Полезной эффективностью стала замена больших недолговечных устройств электромеханического типа приборами оптоэлектронного принципа действия.
  • Иногда оптронные компоненты применяются в энергетике, хотя это довольно специфические решения.
Контроль электрических процессов

Мощность светового потока от светодиода и величина фототока, который образуется в линейных цепях фотоприемников, напрямую зависит от тока проводимости излучателя. Поэтому по бесконтактным оптическим каналам можно передать информацию о процессах в цепях электрического тока, связанных проводами с излучателем. Наиболее эффективным стало применение излучателей света оптопар в датчиках, электрических изменений в силовых цепях высокого напряжения. Точная информация об аналогичных изменениях имеет важность для своевременной защиты источников и потребителей электроэнергии от чрезмерных нагрузок.

Стабилизатор с контрольным оптроном

Оптроны эффективно работают в стабилизаторах высокого напряжения. В них они образуют оптические каналы обратных связей отрицательной величины. Стабилизатор, изображенный на схеме, является прибором последовательного вида. При этом элемент регулировки выполнен на биполярном транзисторе, а стабилитрон на основе кремния работает в качестве источника эталонного опорного напряжения. Компонентом сравнения является светодиод.

При возрастании выходного напряжения, повышается и проводимость светодиода. На транзистор оптрона оказывает действие фототранзистор, при этом стабилизирует напряжение на выходе.

Достоинства оптронов
  • Бесконтактное управление объектами, гибкость и разнообразие видов управления.
  • Устойчивость каналов связи к электромагнитным полям, что позволяет создать защиту от помех и взаимных наводок.
  • Создание микроэлектронных устройств с приемниками света, свойства которых могут изменяться по определенным сложным законам.
  • Увеличение перечня функций управления сигналом выхода оптронов с помощью воздействия на материал канала оптики, создание приборов и датчиков для передачи данных.
Недостатки оптронов
  • Малый КПД, вследствие двойного преобразования энергии, большой расход электроэнергии.
  • Значительная зависимость работы от температуры.
  • Большой собственный шумовой уровень.
  • Технология и конструкция недостаточно совершенны, так как применяется гибридная технология.

Такие отрицательные моменты оптронов постепенно устраняются по мере развития технологии схемотехники и создания материалов. Большая популярность оптронов вызвана, прежде всего, уникальными свойствами этих устройств.

Похожие темы:

Оптопара, оптрон, оптореле- электрические сигналы в световые

Оптопарой (иначе – оптроном) называют электронные прибора предназначенные для преобразования электрических сигналов в световые, их передачи через оптические каналы и повторного преобразования сигнала вновь в электрический. Конструкция оптрона подразумевает наличие специального светового излучателя (в современных устройствах для этого применяются световые диоды, прежние модели оснащались малогабаритными лампами накаливания) и устройства, отвечающего за преобразование полученного оптического сигнала (фотоприёмника). Обе эти составляющие объединяются при помощи оптического канала и общего корпуса.

Классификация разновидностей оптопар

Существует несколько характеристик, в соответствии с которыми можно разделить модели оптопар на несколько групп.

В зависимости от степени интеграции:

  • элементарный оптрон – включает в себя 2 и более элемента объединённых общим корпусом;
  • оптронная интегральная схема – конструкция состоит из одной и более оптопар и, помимо этого, ещё может быть оснащена дополняющими элементами (например, усилителем).

В зависимости от разновидности оптического канала:

  • Оптический канал открытого типа;
  • Оптический канал закрытого типа.

В зависимости от типа фотоприёмника:

  • Фоторезисторные (или просто резисторные оптопары);
  • Фотодиодные оптопары;
  • Фототранзисторные (используется обычный или составной биполярный фототранзистор) оптопары;
  • Фототиристорные, либо фотосимисторные оптопары;
  • Оптопары функционирующие с помощью фотогальванического генератора (солнечная батарейка).

Конструкция устройств последнего вида зачастую дополняются полевыми транзисторами, за управление затвором которого отвечает тот же генератор.

Фотосимисторные оптроны или те, которые оснащены полевыми транзисторами, могут называться «оптореле», либо «твердотельное реле».

Рис.1: Устройство оптрона

Оптоэлектронные устройства работают по-разному в зависимости от того, к какому из двух видов направлений они относятся:

Работа прибора базируется на принципе, в соответствии с которым происходит преобразование световой энергии в электрическую. Причём, переход осуществляется посредством твёрдого тела  и происходящих в нём процессов внутреннего фотоэлектрического эффекта (выражающегося в испускании веществом электронов под воздействием фотонов) и эффекта свечения под действием электрического поля.

Прибор функционирует благодаря тонкому взаимодействию твёрдого тела и электромагнитного излучения, а также используя лазерные, голографические и фотохимические устройства.

Фотонные электронно-вычислительные машины компонуются с использованием одной из двух категорий оптических элементов:

  • Оптронов;
  • Кванто-оптических элементов.

Они являются моделями устройств соответственно электронно-оптического и оптического направлений.

Будет ли оптрон передавать сигнал линейно, определяется теми характеристиками, которыми обладает вмонтированный в конструкцию фотоприёмник. Наибольшую линейность передачи можно ожидать от резисторных оптронов. Как следствие, процесс эксплуатации подобных устройств отличается наибольшим удобством. Ступенью ниже стоят модели с фотодиодами и одиночными биполярными транзисторами.

Для обеспечения работы импульсных приборов применяют оптроны на биполярных, либо полевых транзисторах, поскольку там нет необходимости в линейной передаче сигнала.

Наконец, фототиристорные оптроны монтируют, чтобы обеспечить гальваническую изоляцию и безопасность эксплуатации устройства.

Применение

Существует множество сфер, в которых необходимо использование оптронов. Такая широта применения обусловлена тем, что они являются элементами, обладающими множеством различных свойств и на каждое их качество приходится отдельная сфера применения.

  • Фиксация механического воздействия (применяются устройства, оснащённые оптическим каналом открытого типа, который можно перекрыть (оказать механическое воздействие), а значит, само устройство можно использовать как сенсор):
    • Детекторы наличия (выявление наличия/отсутствия бумажных листов в принтере);
    • Детекторы конечной (начальной) точки;
    • Счётчики;
    • Дискретные спидометры.
  • Гальваническая изоляция (использование оптронов позволяет передавать сигнал не связанный с напряжением, также с их помощью обеспечивается бесконтактное управление и защита), которая может обеспечиваться:
    • Оптопарой (в большинстве случаев применяется как информационный передатчик);
    • Оптореле (более прочего подходит для управления сигнальными и силовыми цепями).

Оптопары

Использование транзисторных, либо интегральных оптопар особенно актуально, если требуется обеспечить гальваническую изоляцию в сигнальной цепи или цепи с незначительным управляющим током. Роль элемента управления могут выполнять трёхэлектродные полупроводниковые приборы, схемы, управляющие дискретными сигналами, а также цепи с особой специализацией.

Рис2: Оптопары 5000 Vrms 50mA.

Параметры и особенности работы оптопар

Опираясь на точную конструкцию прибора, можно определить его электрическую прочность. Под этим термином понимается значение напряжения, возникающего между цепями входа и выхода.Так, производители оптопар, обеспечивающих гальваническую изоляцию, демонстрируют целый ряд моделей с различными корпусами:

  • DIP;
  • SOP;
  • SSOP;
  • Miniflat-lead.

В зависимости от типа корпуса у оптопары формируется то или иное напряжение изоляции. Чтобы создать условия, в которых уровень напряжения достаточный для пробоя изоляции был достаточно велик, следует сконструировать оптопару таким образом, чтобы следующие детали были расположены достаточно далеко друг от друга:

  • Световой диод и оптический регистратор;
  • Внутренняя и внешняя сторона корпуса.

В отдельных случаях можно обнаружить оптопары специализированной группы, изготавливаемые в соответствии с международным стандартом безопасности. Уровень электрической прочности у этих моделей на порядок выше.

Другой значимый параметр транзисторной оптопары носит название «коэффициента передачи тока». Согласно значению этого коэффициента устройство относят к той или иной категории, что и отображается в названии модели.

Относительно уровня нижней рабочей частоты оптронов никаких ограничений нет: они хорошо функционируют в цепи с постоянным током. А верхняя граница рабочей частоты этих приборов, задействованных в передаче сигналов цифрового происхождения, исчисляется в сотнях мегагерц. Для оптронов линейного типа этот показатель ограничивается десятками мегагерц. Для самых медленных конструкций, включающих в себя лампу накаливания, наиболее характерна роль низкочастотных фильтров, работающих на частотах, не достигающих 10 Герц

Транзисторная оптопара и производимые ею шумы

Существует две основные причины тому, что работа транзисторной пары сопровождается шумовыми эффектами:

  • Проходная ёмкость между световым диодом и транзисторной базой;
  • Паразитная ёмкость между коллектором и фототранзисторной базой.

Чтобы побороть первую причину, понадобится вмонтировать особый экран. Вторая же устраняется через верно подобранный рабочий режим.

Оптореле

Оптореле, иначе называемое твердотельным реле, обычно используется для регуляции работы цепи с большими управляющими токами. Роль управляющего элемента здесь обычно выполняют два MOSFET транзистора со встречным подключением, подобная конфигурация обеспечивает возможность функционирования в условиях переменного тока.

Рис.3: Оптореле КР293 КП2В

Классификация видов оптореле

Для оптореле определено три типа топологий:

  1. Нормально разомкнутые.Предполагается, что управляющая цепь будет замыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
  2. Нормально замкнутые.Предполагается, что управляющая цепь будет размыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
  3. Переключающая.Третья топология предполагает сочетание каналов нормально-замкнутого и нормально разомкнутого типа.

Оптореле подобно оптопаре имеет характеристику по электрической прочности.

Разновидности оптореле

  • Модели стандартного типа;
  • Модели, имеющие малое сопротивление;
  • Модели, имеющие малое СxR;
  • Модели, имеющие малое напряжение смещения;
  • Модели, имеющие высокое напряжение изоляции.

Сферы применения оптореле

  • Модем;
  • Измерительное устройство;
  • Сопряжение с исполнительным устройством;
  • Автоматические телефонные станции;
  • Электрический, тепловой, газовый счётчик;
  • Коммутатор сигналов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Оптопары

Оптопарой называют оптоэлектронный полупроводниковый прибор, содержащий источник и приемник оптического излучения, которые оптически и конструктивно связаны между собой, и предназначенный для выполнения различных функциональных преобразований электрических и оптических сигналов.

Источниками излучения могут быть лампы накаливания, газоразрядные лампы, полупроводниковые излучатели, светодиоды. В интегральных оптоэлектронных схемах источником оптического излучения является инжекционный светодиод, обеспечивающий высокое быстродействие оптопар. Фотоприемниками могут быть: фоторезисторы, фотодиоды, фототранзисторы, фототиристоры. Сочетание в одном конструктивном элементе светодиода с одним из этих фотоприемников позволило создать ряд оптопар с различными характеристиками: резисторных, диодных, транзисторных, тиристорных (рис. 5.19). Связывающим звеном между источником излучения и фотоприемником служит пассивная или активная оптическая среда, выполняющая функции световода.

Рис.8.18. Виды оптопар: резисторная (а), диодная (б), транзисторная (в), тиристорная(г),

Принцип действия оптопары основан на двойном преобразовании энергии. В источниках излучения энергия электрического сигнала преобразуется в оптическое излучение, а в фотоприемниках оптический сигнал преобразуется в электрический сигнал (ток или напряжение). Оптопара представляет собой прибор с электрическими входными и выходными сигналами.

Световод обеспечивает гальваническую развязку входной и выходной цепей (сопротивление изоляции может достигать 1012…1014 Ом, а емкость связи 10-2 пФ) и однонаправленность передачи сигналов от источника излучения к фотоприёмнику, что характерно для оптических линий связи.

Достоинствами оптопар является:

1. отсутствие электрической связи между входом и выходом, а также обратной связи между фотоприёмником и источником излучения.

2. широкая полоса пропускания электрических колебаний, что позволяет передавать сигналы в диапазоне частот от 0 до 1014Гц.

3. высокая помехозащищённость оптического канала, что обусловлено невосприимчивостью фотонов к воздействию внешних электромагнитных полей.

4. простота совмещения оптопар с микросхемами в различных устройствах телекоммуникации.

Оптопары используются в качестве:

а) элемента электрической развязки в цифровых и импульсных устройств, а так же аналоговых устройств.

б) бесконтактного управления высоковольтными источниками питания в различных системах автоматики.

в) ключа для формирования и коммутации мощных импульсов, а так же для связи датчиков с измерительными устройствами и блоками.

Резисторные оптопары наиболее универсальны. Они могут использоваться в аналоговых и ключевых устройствах, имеют широкий диапазон изменения сопротивления (десятки–сотни МОм в неосвещенном и сотни Ом в освещенном состояниях), низкий частотный диапазон. В резисторной оптопаре в качестве излучателя применяются светодиоды, работающие в широком оптическом диапазоне. Для получения энергетических параметров необходимо согласовать излучатель и приемник по спектральным характеристикам.

Резисторные оптопары описываются следующими параметрами входной и выходной цепей:

1. Максимальный входной ток Iвх. макс - это максимальное значение среднего входного или постоянного тока.

2. Входное напряжение Uвх - это прикладываемое ко входным зажимам излучателя постоянное или эффективное напряжение при рабочем входном токе.

3. Выходной коммутирующий ток Iвых. ком - это номинальный выходной ток управляемый нагрузкой.

4. Максимальный выходной ток - это значение тока при котором резисторный оптрон работает длительное время.

5. Максимальное выходное коммутируемое напряжение - это максимальное значение напряжения на выходе оптопары.

6. Максимальная мощность рассеяния на выходе оптопары при которой обеспечивается длительная работоспособность устройства.

7. Выходное темновое и выходное световое сопротивления.

8. Проходная емкость Спр - между входом и выходом оптопары.

9. Сопротивление изоляции Rиз - это сопротивление между входом и выходом оптопары.

10. Максимальное напряжение изоляции - это максимальное напряжение при котором сохраняется прочность и надежность изделия, прикладываемого между входом и выходом оптотары.

Примерами резисторных оптопар могут быть: ОЭП-16, ОЭП-1, ОЭП-2, ОЭП-9.

Диодные оптопары используются в качестве ключа и могут коммутировать ток с частотой 106…107 Гц. Темновое сопротивление достигает 108…1010Ом, а при освещении снижается до сотен Ом. Сопротивление между входной и выходной цепями 1013…1015 Ом. В качестве излучателя в диодных оптопарах используется светодиод, работающий в инфракрасной области излучения, и в качестве фотоприемника - кремневый фотодиод. Светодиод имеет максимум спектральной характеристики на длине волны около 1мкм.

Диодные оптопары описываются следующими параметрами входной и выходной цепями:

1. Uвх - входное напряжение определяется при заданном входном токе, протекающем через светодиод;

2. Iвх. макс - это максимальное значение постоянного тока или импульсного тока, при котором обеспечивается долговременная надежная работа оптопары;

3. Uвх. обр. макс - это максимальное входное обратное напряжение прикладываемое ко входу оптопары, при котором обеспечивается долговременная надежная работа оптопары;

4. Iт - выходной (тепловой) ток фотодиода при отсутствии входного (фотопотока);

5. Iвых. обр - выходной обратный ток при заданном напряжении на выходе и отсутствие входного тока.

6. Uвых. макс. обр - максимальное обратное напряжение выходной цепи, при котором фотодиод работает надежно и долговременно;

7. tнр - время нарастания выходного сигнала, при котором амплитуда выходного напряжения изменяется от 0,1 до 0,5 Uвых. макс;

8. tсп - время спада выходного сигнала. За этот промежуток времени выходное напряжение уменьшается от 0,9 до 0,5 своего максимального значения.

Примерами диодных оптопар являются АОД101А...АОД101Д, АОД107, ЗОД107А и др.

Транзисторные оптопары имеют большую чувствительность, чем диодные. Быстродействие не превышает 105 Гц. В транзисторной оптопаре используется светодиод с длиной волны излучения около 1 мк м, а в качестве фотоприемника - кремниевый фототранзистор n-p-n-типа.

Если отсутствует оптическое излучение, то в цепи коллектора фототранзистора всегда протекает небольшой обратный ток (темновой ток), величина которого сильно зависит от температуры. Для снижения величины темнового тока включается внешний резистор между выводами базы и эмиттера величиной порядка 0,1...1,0 М Ом.

Транзисторная оптопара описывается параметрами входной и выходной цепей. Учитывая что в диодных и транзисторных оптопарах используются практически одинаковые светодиоды, то входные параметры транзисторных оптопар такие же как и у диодных оптопар.

Транзисторный оптрон описывается следующими параметрами выходной цепи:

1. Uост - остаточное выходное напряжение на выходе оптопары, когда фототранзистор открыт;

2. Iут.вых - ток протекающий в выходной цепи при закрытом фототранзисторе (ток утечки);

3. Pср. макс - средняя максимальная мощность рассеяния при которой оптопара сохраняет долговременную надежную работу;

4. Iвых. макс - максимальный выходной ток фототранзистора при надежной его работе;

5. tнр - время нарастания выходного сигнала, при котором выходное напряжение изменяется от 0,9 до 0,1 своего максимального значения.

6. tсп - время спада выходного напряжения, при котором выходное напряжение увеличивается от 0,1 до 0,9 максимального значения.

7. tвкл - время включения - это время с момента подачи входного сигнала до момента, когда входной сигнал достигает 0,1 Uвх. макс. или это время стада - tсп выходного напряжения до уровня 0,1 Uвых. макс.

8. tвыкл - время выключения - это время за которое входной сигнал уменьшается до 0,9 Uвх.макс. или это tнр - время нарастания выходного напряжения до 0,9 Uвых.макс.

9. Максимальное напряжение изоляции Uиз - напряжение, которое может быть приложено между входом и выходом и при котором сохраняется электрическая прочность оптопары.

Примерами транзисторных оптопар являются: АОТ123А, ЗОТ123Б, АОТ110(А,Б,В), ЗОТ123А, АОТ123Т и др.

Тиристорные оптопары применяются в ключевых режимах, для формирования и коммутации мощных импульсов. Излучателем в тиристорной оптопаре служит светодиод, а приемником - кремневый фототиристор. Фототиристор сохраняет включенное состояние даже при прекращении излучения светодиода. Всвязи с этим управляющий световой сигнал от светодиода может подаваться только на время необходимое для отпирания тиристора. Все это позволяет снизить энергию, необходимую для управления фототиристорной оптопарой. Для запирания фототиристора необходимо снять внешнее напряжение. Все это отличает тиристорную оптопару от транзисторной. Тиристорная оптопара описывается следующими параметрами:

1. Ток включения Iвкл (входной ток срабатывания Iвх, сраб) - постоянный прямой ток оптопары, который переводит оптопару в открытое состояние при заданном режиме на входе;

2. Импульсный ток включения Iвкл. им - амплитуда входного импульса тока заданной длительности, которая включает оптопары в открытое состояние;

3. Uвх - входное напряжение на входе светодиода при заданном входном токе включения;

4. Iвх - входной постоянный ток светодиода;

5. Iвх. им - входной импульсный ток оптопары;

6. Iвых. закр - выходной ток в закрытом состоянии, который протекает в выходной цепи при закрытом состоянии фототиристора и заданном режиме;

7. Iвых. обр - выходной обратный ток протекающий при закрытом состоянии фототиристора;

8. Uост - выходное напряжение на открытом фототиристоре;

9. Iвых. уд - ток удержания - наименьший ток фототиристора в открытом состоянии;

10. Uвых.мин - минимальное постоянное выходное напряжение на фототиристоре при котором обеспечивается включение оптопары при заданном сигнале на входе;

11. Uвых.обр - максимальное выходное напряжение при котором обеспечивается заданная надежность;

12. tвкл - время включения - это интервал времени между входным импульсом тока на уровне 0,5 и выходным током на уровне 0,9 максимального значения;

13. tвыкл - время выключения - это промежуток времени от момента окончания выходного тока до момента начала следующего выходного тока, под действием которого фототиристор не переключается в открытое состояние.

14. Cвых - выходная емкость на выходе тиристорной оптопары в закрытом состоянии.

Примеры тиристорных оптопар: АОУ103А, ЗОУ103А, АОУ103В, ЗОУ103Б.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 2

Аналоговыми сигналами называют непрерывно изменяющиеся во времени электрические сигналы (ток, напряжение), значения которых в каждый момент времени однозначны. Аналоговый сигнал как функция времени может быть наглядно представлен графиком или осциллограммой. Устройства, формирующие и преобразующие аналоговые сигналы называют аналоговыми. Одной из основных функций аналоговых устройств является усиление электрических сигналов.

Усилителем электрических сигналов называется устройство, предназначенное для усиления мощности входного сигнала, усиление осуществляется активными элементами (биполярными, полевыми транзисторами) за счет потребления энергии от источника питания под действием входного сигнала и такие усилители называют электронными. Входной сигнал прикладывается к управляющему входному электроду активного элемента и управляет передачей энергии от источника питания в нагрузку. За счёт изменения сопротивления активного элемента принцип действия усилителя на одном транзисторе удобно объяснить с помощью структурной схемы (рис. 7.1).

Электрическая цепь, по которой управляющий сигнал подаётся к активному элементу, называется входной цепью или входом усилителя.

Электрическая цепь, в которой образуется выходной сигнал, называют выходной цепью усилителя или просто выходом. В цепь выходного электрода активного элемента для выделения усиленного сигнала включается нагрузка. Внешняя нагрузка усилителя является потребителем усиленного сигнала. Активный элемент и резистор R являются основой любого усилителя, а совместно с источником питания образуют выходную цепь усилителя. Под действием входного сигнала изменяется сопротивление активного элемента и изменяется ток в последовательной цепи, состоящей из источника питания, резистора, активного элемента. В результате этого изменяется падение напряжения на резисторе, а также выходное напряжение

. (10.1)

Если сопротивление активного элемента равно нулю, тогда согласно приведённому выражению выходное напряжение усилителя равно нулю. Если сопротивление активного элемента станет равным бесконечности, то выходное напряжение усилителя станет равным Uип.

В процессе изменения входного сигнала сопротивление активного элемента постоянному току изменяется и принимает некоторые значения в диапазоне от нуля до бесконечности. Выходное напряжение усилителя, повторяя форму входного, будет иметь значения в диапазоне от нуля до напряжения источника питания Uип. При соответствующем выборе напряжения источника питания и сопротивления нагрузки активного элемента, мощность выходного сигнала будет больше мощности, затрачиваемой на управление сопротивлением активного элемента.

Таким образом, процесс усиления основан на преобразовании активным элементом энергии источника питания Uип в энергию переменного напряжения в выходной цепи при изменении сопротивления активного элемента под действием входного сигнала.

К аналоговым электронным устройствам относятся усилители и устройства на их основе. Усилители классифицируются по следующим признакам.

По характеру усиливаемых сигналов усилители бывают – гармонических колебаний и импульсных сигналов.

По диапазону частот – усилители постоянного и усилители переменного тока. Усилители постоянного тока усиливают как постоянную, так и переменную составляющие входного сигнала, усилители переменного тока усиливают переменную составляющую от нижней граничной частоты fн до верхней граничной частоты fв. Диапазон усиливаемых частот называют полосой пропускания. За пределами полосы пропускания усиление падает. В зависимости от полосы пропускания усилители переменного тока бывают: усилители низкой частоты (УНЧ), усилители высокой частоты (УВЧ). Усилители низкой и высокой частоты предназначены для усиления переменных сигналов, их полоса пропускания лежит в пределах от десятков Гц до десятков кГц. Особенностью усилителей низкой частоты является большое отношение – десятки, десятки тысяч раз. Усилители высокой частоты усиливают сигналы в узкой полосе частот. Они характеризуются небольшой величиной отношения верхней частоты к нижней . Узкая полоса пропускания обеспечивается применением в качестве нагрузки активного элемента колебательного контура. В связи с этим УВЧ иногда называют резонансными или полосовыми.

Усилители переменного сигнала, предназначенные для усиления сигналов в устройствах связи, телевизионной технике, радиолокационной аппаратуре, имеющие очень широкую полосу пропускания, называют широкополосными. Если усиливаемый сигнал регистрируется визуально, т.е. воспроизводится на экране электронно-лучевой трубки, то широкополосные усилители называют видеоусилителями. У широкополосных усилителей полоса пропускания лежит в полосе от нескольких кГц и ниже до нескольких МГц и выше.

По типу используемых активных элементов усилители бывают на биполярных и полевых транзисторах, на интегральных микросхемах и др.

По конструктивным признакам усилители бывают: на дискретных элементах, на интегральных микросхемах, комбинированные.

По способу соединения (связи) отдельных каскадов усиления усилители бывают: усилители с гальванической связью, усилители с резистивно-емкостной связью; усилители с трансформаторной и оптронной связью.

Непосредственная или гальваническая связь используется в усилителях постоянного тока, где вход последующего каскада соединяют с выходу предыдущего каскада непосредственно или с помощью резисторов. В усилителях переменного сигнала для связи каскадов используют конденсаторы, резисторы и трансформаторы. В усилителях мощности для связи каскадов между собой и с нагрузкой иногда используют трансформаторы. Конденсаторы и трансформаторы в усилителях переменного сигнала, служат для разделения переменной составляющей напряжения и постоянной составляющей.

По способу включения активного усилительного элемента различают три основных типа усилительных каскадов:

– с общим эмиттером (общим истоком);

– с общим коллектором (общим стоком);

– с общей базой (общим затвором).

Характерной особенностью каждого из них является то, что один электрод транзистора является общим для входной и выходной цепей, и он определяет тип усилительного каскада.

Усилитель электрических сигналов - это электронное устройство, предназначенное для усиления сигнала, поданного на его вход. Усиление возможно по току, напряжению и мощности. Процесс усиления основан на преобразовании активным элементом (биполярным, полевым транзистором) энергии источника постоянного напряжения в энергию переменного напряжения на нагрузке при изменении сопротивления активного элемента под действием входного сигнала.

Работа усилительных устройств описывается рядом параметров и характеристик.

Коэффициент усиления или коэффициент передачи – отношение амплитуды выходного сигнала к амплитуде входного в установившемся режиме при гармоническом входном сигнале. Возможно усиление по напряжению, току или мощности: Кu = Uвых/Uвх - коэффициент усиления по напряжению; Кi = Iвых/Iвх - коэффициент усиления по току; Кр = Рвых/Рвх- - коэффициент усиления по мощности.

Для многокаскадных усилителей общий коэффициент усиления можно определить как произведение коэффициентов усиления отдельных каскадов, Кu = Кu1 Кu2 ¼ Кun (раз) или сумму коэффициентов усиления, выраженных в децибелах: Кu = Кu1 + Кu2 + ¼ +Кun (дБ).

Входное сопротивление усилителя - определяется как отношение амплитуды входного напряжения к амплитуде входного тока . Характер входного сопротивления (комплексное или активное) зависит от диапазона усиливаемых частот.

Выходное сопротивление определяется между выходными зажимами при отключенном сопротивлении нагрузки как отношение амплитуды выходного напряжения к амплитуде выходного тока .

Выходная мощность – мощность гармонического сигнала на выходе усилителя при работе на расчетную нагрузку и заданном коэффициенте гармоник или нелинейных искажений .

Коэффициент полезного действия(КПД) – отношение выходной мощности, отдаваемой усилителем в нагрузку, к общей мощности, потребляемой от источника питания h = (Рвых/Р0)100 %.

Чувствительность (номинальное входное напряжение) – амплитуда напряжения сигнала, который нужно подать на вход усилителя, чтобы получить на выходе сигнал с заданной мощностью.

Динамический диапазон – отношение наибольшего допустимого значения входного напряжения к его наименьшему допустимому значению D = Uвх макс/Uвх мин.

Диапазон усиливаемых частот (полоса пропускания) – разность между верхней и нижней граничными частотами Df = fв – fн, в которой коэффициент усиления изменяется по определенному закону с заданной точностью.

Коэффициент гармоник позволяет оценить нелинейные искажения усилителя в процентах

, (10.2)

где P1, P2, ¼, Pn – мощности гармонических составляющих выходного сигнала (nf1) при синусоидальном входном сигнале с частотой f1. Гармоники входного сигнала возникают в выходном спектре из-за нелиинейности вольт-амперных характеристик (ВАХ) активных элементов усилителя, а также при ограниченном значении напряжения питания.

Линейные искажения определяются зависимостями параметров транзисторов от частоты и реактивными элементами усилительных устройств. Линейные искажения бывают трех видов: частотные, фазовые и переходные.

Амплитудная характеристика (АХ) – это зависимость амплитуды (или действующего значения) напряжения первой гармоники выходного сигнала от амплитуды (или действующего значения) напряжения гармонического входного сигнала. Для идеального усилителя , поэтому АХ линейна и проходит через начало координат (штриховая линия), наклон характеристики к оси абсцисс определяется коэффициентом усиления

Рис. 10.1. Амплитудная характеристика усилителя

При малых входных сигналах нелинейность АХ определяется влиянием помех (шумы усилителя, наводки, фон и т.д.), которые приводят к наличию выходного сигнала при отсутствии входного. При превышении входного напряжения значения Uвх макс влияние оказывает нелинейность ВАХ активного элемента и ограниченное напряжение питания .

По АХ легко определить динамический диапазон усилителя.

Минимальной амплитудой напряжения входного сигнала следует считать такое ее значение, при котором амплитуда напряжения выходного сигнала в два раза превышает амплитуду напряжения шумов на выходе усилителя. Максимальная амплитуда напряжения входного сигнала ограничивается допустимым уровнем коэффициента гармоник.

Амплитудно-частотная характеристика (АЧХ) определяет зависимость модуля коэффициента усиления от частоты гармонического сигнала на входе усилителя. На рис. 10.2. представлена типичная АЧХ резистивного усилителя.

Рис.10.2. Амплитудно-частотная характеристика усилителя

В полосе пропускания усилителя или области средних частот (СЧ) коэффициент усиления можно считать постоянной величиной. Частоты, на которых коэффициент усиления уменьшается в раз относительно своего значения в области СЧ, определяют нижнюю fн и верхнюю fв границы полосы пропускания усилителя и называются граничными частотами. Для определенности величину находят на частоте . Уменьшение модуля коэффициента усиления в области низких частот (НЧ) обусловлено наличием разделительных и блокировочных конденсаторов в схемах усилителей. Поведение АЧХ в области высоких частот (ВЧ) определяется частотными свойствами транзисторов, влиянием емкости монтажа и комплексного характера сопротивления нагрузки.

Измерение АЧХ проводят при фиксированном уровне входного сигнала, соответствующем линейному участку АХ, обычно Uвх = (0,1...0,3)Uвх макс. Поскольку полоса пропускания резистивных усилителей лежит в пределах нескольких декад, то при построении ее графика, используется логарифмический масштаб по оси частот.

Фазо-частотная характеристика (ФЧХ) - это зависимость угла сдвига фазы φ между выходным и входным напряжениями от частоты. Ухо человека не реагирует на изменения фазы гармонических сигналов, поэтому ФЧХ редко используется для описания электроакустических устройств. Однако искажения фазы могут привести к искажению формы колебаний, более сложных, нежели гармонический сигнал. В особенности фазовая характеристика важна в широуополосных усилителях ( например, телевизионных или усилителях современных радиочастотных трактов цифровых систем передачи. Ниже на рис.10.3. показана типичная ФЧХ Идеальный вид ФЧХ представляется прямой линией.

.

Рис10.3. ФЧХ усилителя

Переходная характеристика (ПХ) устанавливает зависимость мгновенного значения напряжения на выходе усилителя от времени при бесконечно быстром скачкообразном изменении входного сигнала. ПХ оценивает искажения формы усиливаемых импульсных сигналов, которые обусловлены реактивными элементами схемы усилителя. На рис. 10.4 представлена нормированная ПХ усилителя.

Рис. 10.4 Нормированная ПХ усилителя

Изменение выходного напряжения оказывается растянутым во времени и характеризуется временем установления tуст. Время установления определяется временным интервалом, в течение которого выходное напряжение изменяется от 0,1 до 0,9 установившегося значения Uуст. Время установления связано с верхней граничной частотой следующей зависимостью: . ПХ усилителя связана с его АЧХ, причем поведение АХЧ в области ВЧ определяет поведение ПХ в области малого времени и наоборот.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 3

Фотоэлементы, работа которых основана на фотогальваническом режиме, предназначены для преобразования светового излучения в электрическую энергию.

Первые вентильные фотоэлементы из гемиоксида (закиси) меди были разработаны в 1926 году. Наибольшее применение они нашли для преобразования солнечной энергии в электрическую. Фотоэлементы, реализующие этот принцип, называют солнечными преобразователями. Из таких элементов путем последовательного и параллельного соединения создаются солнечные батареи. Они используются для питания радиоэлектронной аппаратуры в космических аппаратах, автоматических метеостанциях, микрокалькуляторах и маломощных установках различного назначения.

Спектр солнечной энергии включает в себя практически весь оптический диапазон. Весь спектр солнечной энергии не удается преобразовать из-за отсутствия идеальных полупроводниковых материалов. Поэтому выбирают полупроводниковые материалы с высоким коэффициентом поглощения и большим квантовым выходом в области максимальной интенсивности спектра солнечного излучения, с минимальным коэффициентом отражения, определенными шириной запрещенной зоны, степенью легирования, коэффициентом преломления и другими параметрами. Для этих целей используют кремний и арсенид галлия. Кремниевые преобразователи имеют стабильные параметры в диапазоне температур –150…+150 °С. КПД фотопреобразователя – отношение максимальной мощности, которую можно получить от фотоэлемента, к полной мощности светового потока, падающего на рабочую поверхность фотоэлемента. Предельный расчетный КПД кремниевого преобразователя 23 %, а реальный – 14…18 %. Арсенид-галлиевые преобразователи имеют реальный КПД около 11 %.

Для сравнения преобразователей как источников питания используется параметр качества – отношение выходной мощности к массе источника. Все монокристаллические преобразователи имеют меньший параметр качества, чем пленочные на сульфиде CdS или теллуриде CdTe кадмия. Перспективными считаются преобразователи на МОП-структурах с барьером Шотки.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 4

Фототранзистором называют полупроводниковый управляемый оптическим излучением прибор с двумя p–n переходами.

Фототранзисторы, как и обычные транзисторы могут быть p–n–р и n–p–n типа. Конструктивно фототранзистор выполнен так, что световой поток облучает область базы. Наибольшее практическое применение нашло включение фототранзистора в схеме с ОЭ, при этом нагрузка включается в коллекторную цепь. Входным сигналом фототранзистора является модулированный световой поток, а выходным – изменение напряжения на резисторе нагрузки в коллекторной цепи.

Напряжение питания на фототранзистор подают как и на обычный биполярный транзистор, работающий в активном режиме, т.е. эмиттерный переход смещен в прямом направлении, а коллекторный в обратном (рис. 8.11,а).

Рис. 8.11. Схемы включения фототранзистора с подключенной базой (а) и со свободной базой (б) и вольтамперные характеристики

Однако он может работать и с отключенным выводом базы (рис. 8.11,б), а напряжение прикладывается между эмиттером и коллектором. Такое включение называется включением с плавающей базой и характерно только для фототранзисторов. При этом фототранзистор работает в активном режиме ближе к границе отсечки.

При Ф = 0 ток очень мал и равен темновому току

. (8.9)

где h31б – коэффициент передачи эмиттерного тока.

Рассмотрим принцип работы фототранзистора при включении с плавающей базой. При освещении фототранзистора под действием света в базовой области и коллекторном переходе образуются свободные носители заряда, эти носители диффундируют в базе к коллекторному переходу. Неосновные носители области базы (для транзистора n–p–n типа) – электроны экстрагируют в область коллектора, создавая фототок в коллекторном переходе. Оставшиеся в объеме базы основные носители (дырки), создают положительный объемный заряд и компенсируют заряд неподвижных ионов примесей на границе эмиттерного перехода.

Потенциальный барьер эмиттерного перехода снижается, что увеличивает инжекцию основных носителей (электронов) в область базы. Часть этих электронов рекомбинирует в базе с дырками, а большая часть экстрагирует через коллекторный переход, увеличивая его ток. Таким образом, ток в коллекторной цепи равен сумме фототока Iф и тока Iк, инжектированных эмиттером электронов, дошедших к коллекторному переходу и втянутых его электрическим полем в область коллектора. При Rк = 0, коэффициент усиления фототока равен

. (8.10)

Фототранзистор увеличивает чувствительность в h31э+1 раз по сравнению с фотодиодом, что является главным преимуществом фототранзистора по сравнению с фотодиодом.

Для обеспечения температурной стабильности энергетических параметров одновременно с оптическим управлением используется так же подача напряжения смещения на базу для выбора рабочей точки на входной и выходной характеристиках транзистора. При отсутствии оптического потока темновой ток определяется током базы, что позволяет дополнительно управлять током фототранзистора. Задание определенного темнового тока позволяет обеспечить оптимальный режим усиления слабых световых сигналов, а также суммировать их с электрическими.

Наряду с фототранзисторами n–p–n и p–n–р типов используются полевые фототранзисторы с управляющим p–n переходом и МОП-транзисторы.

На рис. 8.12 представлен полевой фототранзистор с управляющим

p–n переходом и каналом n–типа. Падающий световой поток генерирует в n–канале и p–n переходе (канал–затвор) электроны и дырки. Электрическое поле перехода разделяет носители заряда. Концентрация электронов в n–канале повышается, и уменьшается его сопротивление, а ток стока возрастает. Увеличение дырок в p–области вызывает появление фототока в цепи затвора.

Рис.8.12. Структурная схема полевого фототранзистора с управляющим p-n переходом и каналом n- типа

Переход затвор–канал можно рассматривать как фотодиод, фототок которого Iз (ток затвора) создает падение напряжения на резисторе Rз, что приводит к уменьшению обратного напряжения на p–n переходе канал–затвор. Это вызывает дополнительное увеличение толщины канала, уменьшение его сопротивления и приводит к возрастанию тока стока.

МОП-фототранзисторы с индуцированным каналом имеют полупрозрачный затвор, через который световой поток попадает на полупроводник под затвором. В этой области полупроводника генерируются носители заряда, что приводит к изменению значения порогового напряжения, при котором возникает индуцированный канал. Для установления начального режима иногда на затвор подают напряжение смещения.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 5

Вольтамперные характеристики аналогичны выходным характеристикам биполярного транзистора, включенного по схеме с ОЭ, где параметром является не ток базы, а световой поток или фототок при Iб=const (рис. 5.15,в). Энергетические и спектральные характеристики такие же, как у фотодиода.

Основные параметры фототранзистора следующие.

1. Рабочее напряжение (10…15 В).

2. Темновой ток (до сотен мкА).

3. Рабочий ток (до десятков мА).

4. Максимально допустимая мощность рассеяния (до десятков мВт).

5. Статический коэффициент усиления по фототоку К=1+h31э. Измеряется как отношение фототока коллектора транзистора с плавающей базой к фототоку коллекторного перехода при отключенном эмиттере и постоянном световом потоке, составляет порядка (1…6)´102.

6. Интегральная чувствительность – отношение фототока к падающему световому потоку, составляет 0,2…2 А/лм и выше в (h31э+1) раз по сравнению с чувствительностью эквивалентного диода.

7. Граничная частота – частота, при которой интегральная чувствительность уменьшается в раз по сравнению со своим статическим значением (104…105 Гц). Большую граничную частоту имеют полевые фототранзисторы (107…108 Гц).

Недостатками фототранзисторов является меньшая граничная частота по сравнению с фотодиодами, что ограничивает их применение в волоконно-оптических системах, сравнительно высокий уровень собственных шумов и сильная зависимость темнового тока от температуры.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 6

Фототиристор – это четырехслойная полупроводниковая структура, управляемая световым потоком подобно тому, как триодные тиристоры управляются напряжением, подаваемым на управляющий электрод. Они применяются в качестве бесконтактных ключей для коммутации световым сигналом электрических сигналов большой мощности. Принцип действия фототиристора аналогичен обычному тиристору, при этом увеличение коэффициентов передачи эмиттерных переходов и достигается за счет освещения баз тиристора – n1– и p2–областей (рис. 8.13).

Рис.8.13. Структурная схема фототиристора

Оптический сигнал, попадая на базовые области, вызывает генерацию неравновесных носителей, которые диффундируют к обратно-смещенному коллекторному переходу П2 (рис. 5.17). Неосновные носители (дырки) n1–области экстрагируют через коллекторный переход в p2–область, а неосновные носители p2–области (электроны) перебрасываются в n1–область. За счет этого происходит перераспределение внешнего напряжения Uвн, приложенного к тиристору; напряжение на коллекторном переходе П2 несколько уменьшается, а напряжения на эмиттерных переходах П1 и П3 несколько увеличиваются, что повышает инжекцию носителей из эмиттеров в базы. Эмиттерные токи возрастают, что приводит к увеличению коэффициентов и . В связи с этим процесс включения фототиристора происходит так же, как и при подаче напряжения на управляющий электрод тиристора.

Чем больше световой поток, действующий на тиристор, тем при меньшем напряжении включается фототиристор. Вольтамперная характеристика фототиристора представлена на рис. 5.18.

Рис.8.18. Вольт амперная характеристика фототиристора

Фототиристор остается во включенном состоянии после окончания импульса светового потока. Для выключения фототиристора необходимо уменьшить напряжение или ток до значений, меньших напряжения или тока удержания. Сопротивление фототиристора во включенном состоянии единицы и доли Ом, а в выключенном – сотни кОм. Время переключения лежит в пределах 10-5…10-6 с.

Если у фототиристора имеется вывод от одной из базовых областей, то подавая на управляющий электрод напряжение, смещающее соответствующий эмиттерный переход в прямом направлении, можно понижать напряжение включения. Само включение фототиристора по-прежнему будет осуществляться действием светового потока. Достоинствами фототиристоров является: малое потребление мощности во включенном состоянии, малое время включения, отсутствие искрения, малые габариты.

Основными параметрами фототиристоров являются: напряжение включения Uвкл; ток включения Iвкл, соответствующий напряжению включения; напряжение выключения Uвыкл и ток выключения Iвыкл, при которых фототиристор переходит из открытого состояния в закрытое; темновой ток IТ; пусковой поток Фпуск; минимальный управляющий (пороговый) световой поток; интегральная чувствительность; время выключения tвыкл; номинальный ток открытого фототиристора Iном; максимально допустимое обратное анодное напряжение Uобр макс.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 7

Фоторезистором называют полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, в котором используется явление фотопроводимости, т.е. изменение электрической проводимости полупроводника под действием оптического излучения. Впервые явление фотопроводимости было обнаружено у селена У. Смитом в 1873 году.

Фоторезисторы применяются в тех электронных устройствах, где определяющими факторами являются их высокая чувствительность, большие значения фототока, большая рабочая площадь фотоприемника, а инерционность несущественна.

Фоторезистор включают в цепь источника ЭДС любой полярности. Основным элементом фоторезистора является полупроводниковая пластина, сопротивление которой при освещении изменяется. В качестве полупроводникового материала для фоторезисторов обычно используют сульфид кадмия, сернистый таллий, селенистый теллур, сернистый висмут, селенид кадмия или сульфид цинка. На поверхность фоточувствительного слоя наносят металлические электроды, иногда электроды наносят непосредственно на диэлектрическую подложку перед осаждением полупроводникового слоя.

Поверхность полупроводникового фоточувствительного слоя, расположенного между электродами, называют рабочей площадкой. При отсутствии освещенности рабочей площадки фоторезистор имеет максимальное сопротивление, называемое темновым, которое составляет 104…107 Ом. По цепи протекает малый темновой ток Iт, обусловленный наличием в неосвещенном полупроводнике некоторого количества свободных носителей заряда. Фоторезистор обладает начальной проводимостью s0, которую называют темновой

, (8.1)

где q – заряд электрона; m – подвижность носителей;

n0, p0 – концентрация подвижных носителей заряда электронов и дырок в полупроводнике в равновесном состоянии.

Под действием света в полупроводнике генерируются избыточные носители, концентрация подвижных носителей заряда увеличивается на величину Dn, Dp. Проводимость полупроводника изменяется на величину

, (8.2)

называемую фотопроводимостью. При изменении яркости освещения, изменяется фотопроводимость полупроводника. Концентрация неравновесных носителей, определяющих фотопроводимость, зависит от параметров полупроводника (ширины запрещенной зоны, типа проводимости, коэффициента преломления и др.) и механизма поглощения. Полная проводимость полупроводника равна .

В беспримесном полупроводнике концентрации избыточных носителей равны , а фотопроводимость называется биполярной (собственной). В примесных полупроводниках преимущественно возрастает концентрация носителей только одного знака – основных и в меньшей степени – неосновных, а их фотопроводимость называется примесной (униполярной).

Изменение проводимости полупроводника при освещении фоторезистора приводит к возрастанию тока в цепи. Разность токов при наличии и отсутствии освещения называют световым током или фототоком.

8.6. Характеристики фоторезистора

Вольт-амперная характеристика представляет собой зависимость тока через фоторезистор I от напряжения U, приложенного к его выводам, при неизменной величине светового потока (рис. 8.5). В рабочем диапазоне напряжений вольт-амперные характеристики фоторезисторов при различных значениях светового потока практически линейны (линейны в пределах допусти мой для них мощности рассеяния).

Рис.8. 5

Энергетическая (световая или люкс-амперная) характеристика представляет собой зависимость фототока от падающего светового потока при постоянном приложенном напряжении к фоторезистору. При малых световых потоках она линейна, а с ростом светового потока рост фототока замедляется за счет возрастания рекомбинации носителей через ловушки и уменьшения их времени жизни. Если вместо светового потока берется освещенность Е в люксах, то энергетическую характеристику называют люкс-амперной.

Cпектральная характеристика фоторезистора есть зависимость фототока от длины волны падающего светового потока (рис. 8.6). для каждого фоторезистора

Рис.8.6

существует свой максимум спектральной характеристики, что связано с различной шириной запрещенной зоны полупроводникового материала. При больших длинах волн, т.е. при малых энергиях квантов света по сравнению с шириной запрещенной зоны полупроводника, энергия кванта оказывается недостаточной для переброса электронов из валентной зоны в зону проводимости. В связи с этим каждый полупроводник и фоторезистор имеет наибольшую (пороговую) длину волны. Она определяется по уровню 0,5´Iмакс со стороны больших длин волн.

Из-за роста показателя преломления при уменьшении длины волны падающего света спектральная характеристика имеет спад при малых длинах волн. В связи с различной шириной запрещенной зоны полупроводниковых материалов, используемых для изготовления фоторезисторов, максимум спектральной характеристики может находиться в инфракрасной, видимой или ультрафиолетовой частях спектра.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 8

1. Темновое сопротивление – это сопротивление фоторезистора при отсутствии освещения. Оно измеряется через 30 с после затемнения фоторезистора, предварительно находившегося при освещенности 200 лк, и составляет 104...107 Ом.

2. Удельная интегральная чувствительность – отношение фототока к произведению светового потока на приложенное напряжение

. (8.3)

Чувствительность называют интегральной, потому что измеряют ее при освещении фоторезистора светом сложного спектрального состава при освещенности 200 лк. Она лежит в пределах десятые доли – сотни мА/В.

3. Граничная частота fгр – это частота синусоидального сигнала, модулирующего световой поток, при котором чувствительность фоторезистора уменьшается в раз по сравнению с чувствительностью при немодулированном потоке; fгр » 103…105 Гц.

4. Температурный коэффициент фототока – коэффициент, показывающий изменение фототока при изменении температуры и постоянном световом потоке

, . (8.4)

5. Рабочее напряжение – зависит от размеров фоторезистора, т.е. от расстояния между электродами, и лежит в пределах от единиц до сотен вольт.

Существенным недостатком фоторезисторов является зависимость сопротивления от температуры и высокая инерционность, связанная с большим временем жизни электронов и дырок после прекращения падающего оптического облучения на фоторезистор. В связи с этим переходные процессы в фоторезисторе протекают с постоянной времени, которая примерно равна времени жизни электронов и дырок в полупроводниковом слое.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 9

Фотодиодом называют полупроводниковый фотоэлектрический прибор, в котором используется внутренний фотоэффект. Устройство фотодиода аналогично устройству обычного плоскостного диода. Отличие состоит в том, что его p–n переход одной стороной обращен к стеклянному окну, через которое поступает свет, и защищен от воздействия света с другой стороны. Фотодиоды могут работать в одном из двух режимов:

– без внешнего источника электрической энергии (вентильный или фотогенераторный, фотогальванический режим);

– с внешним источником электрической энергии (фотодиодный или фотопреобразовательный режим).

Рассмотрим работу фотодиода в вентильном режиме, схема включения представлена на рис.8.7.

Рис 8.7. Схема включения фотодиода для работы в вентильном режиме

При отсутствии светового потока на границе p–n перехода создается контактная разность потенциалов. Через переход навстречу друг другу протекают два тока – Iдр и Iдиф, которые уравновешивают друг друга. При освещении p–n перехода фотоны, проходя в толщу полупроводника, сообщают части валентных электронов энергию, достаточную для перехода их в зону проводимости, т.е. за счет внутреннего фотоэффекта генерируются дополнительные пары электрон-дырка. Под действием контактной разности потенциалов p–n перехода неосновные носители заряда n–области – дырки переходят в р–область, а неосновные носители заряда р–области – электроны – в n–область. Дрейфовый ток получает дополнительное приращение, называемое фототоком Дрейф неосновных носителей приводит к накоплению избыточных дырок в р–области, а электронов в n–области, это приводит к созданию на зажимах фотодиода при разомкнутой внешней цепи разности потенциалов, называемой фото-ЭДС Потенциальный барьер перехода, как и при прямом напряжении, уменьшается на величину фото-ЭДС, называемую напряжением холостого хода Uхх при разомкнутой внешней цепи. Снижение потенциального барьера увеличивает ток диффузии DIдиф основных носителей через переход. Он направлен навстречу фототоку. Поскольку ключ разомкнут, в структуре устанавливается термодинамическое равновесие токов:

. (8.5)

Значение фото-ЭДС не может превышать контактной разности потенциалов p–n перехода. В противном случае из-за полной компенсации поля в переходе разделение оптически генерируемых носителей прекращается. Так, например, у селеновых и кремниевых фотодиодов фото-ЭДС достигает 0,5…0,6 В, у фотодиодов из арсенида галлия – 0,87 В.

При подключении нагрузки к освещенному фотодиоду (ключ замкнут), в электрической цепи появится ток, обусловленный дрейфом неосновных носителей. Значение тока зависит от фото-ЭДС и сопротивления нагрузки, максимальный ток при одной и той же освещенности фотодиода будет при сопротивлении резистора, равном нулю, т.е. при коротком замыкании фотодиода. При сопротивлении резистора не равном нулю, ток во внешней цепи фотодиода уменьшается.

Ток, протекающий через фотодиод, можно записать в следующем виде:

, (8.6)

где Iф – фототок;

I0 – тепловой ток p–n перехода;

U – напряжение на диоде.

При разомкнутой внешней цепи (Rн=¥, Iф общ=0) легко выразить напряжение на переходе при холостом ходе, которое равно фото-ЭДС:

. (8.7)

Фотодиоды, работающие в режиме фотогенератора, часто используются в качестве источников питания, преобразующих энергию солнечного излучения в электрическую.

В фотодиодном или фотопреобразовательном режиме работы последовательно с фотодиодом включается внешний источник энергии, смещающий диод в обратном направлении (рис. 5.12).

Рис.8.8. Схема включения фотодиода для работы в фотодиодном режиме

При отсутствии светового потока и под действием обратно приложенного напряжения через фотодиод протекает обычный начальный обратный ток Iо, который называют темновым. Темновой ток ограничивает минимальное значение светового потока. При освещении фотодиода кванты света дополнительно вырывают электроны из валентных связей полупроводника, увеличивая тем самым поток неосновных носителей заряда через p–n переход. Чем больше световой поток, падающий на фотодиод, тем выше концентрация неосновных носителей заряда вблизи запорного слоя, и тем больший фототок , определяемый напряжением внешнего источника и световым потоком, протекает через диод.

При правильно подобранном сопротивлении нагрузки Rн и напряжении источника питания этот ток будет зависеть только от освещенности прибора, а падение напряжения на сопротивлении можно рассматривать как полезный сигнал.

Фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p–n перехода уменьшается). Недостатком фотодиодного режима работы является большой темновой ток, зависящий от температуры.

5.9. Характеристики и параметры фотодиода

Фотодиод описывается вольтамперной, энергетической (световой), спектральной и частотной характеристиками, приведенными на рис. 8.9, 8.10.

Если к неосвещенному фотодиоду подключить источник напряжения, значение и полярность которого можно изменять, то снятые при этом вольтамперные характеристики будут иметь такой же вид, как у обычного полупроводникового диода (рис. 8.9,а). При освещении фотодиода существенно изменяется лишь обратная ветвь вольтамперной характеристики, прямые же ветви при сравнительно небольших напряжениях практически совпадают.

Рис 8.9. Схема включения фотодиода для работы в вентильном режиме

В квадранте III фотодиод работает в фотодиодном режиме, а в квадранте IV в фотовентильном режиме, и фотоэлемент становится источником электрической энергии. Квадрант I – это нерабочая область для фотодиода, в этом квадранте p–n переход смещен в прямом направлении.

Энергетическая характеристика фотодиода связывает фототок со световым потоком, падающим на фотодиод рис. 8.9,б. При работе фотодиода в вентильном режиме спектральные характеристики существенно зависят от сопротивления резистора, включенного во внешнюю цепь. С ростом нагрузочного сопротивления характеристики все более искривляются и при больших сопротивлениях имеют ярко выраженный участок насыщения. При работе фотодиода в фотодиодном режиме энергетические характеристики линейны, т.е. практически все фотоносители доходят до p–n перехода и участвуют в образовании фототока.

Спектральная характеристика фотодиода аналогична соответствующим характеристикам фоторезистора и зависит от материала фотодиода и количества примесей (рис. 8.10,а).

Рис 8.10. Спектральная (а) и частотная характеристика фотодиода

Селеновые фотодиоды имеют спектральную характеристику, близкую по форме к спектральной зависимости чувствительности человеческого глаза. Германиевые и кремниевые фотодиоды чувствительны как в видимой, так и в инфракрасной части спектра излучения.

Частотная характеристика показывает изменение интегральной чувствительности при изменении яркости светового потока с разной частотой модуляции (рис. 8.1,б). Быстродействие фотодиода характеризуется граничной 0частотой, на которой интегральная чувствительность уменьшается в раз по сравнению со своим низкочастотным значением.

Для повышения чувствительности и быстродействия разработаны следующие фотодиоды: со встроенным электрическим полем; фотодиоды с p–i–n структурой; с барьером Шотки; лавинные фотодиоды.

Фотодиоды со встроенным электрическим полем имеют неравномерно легированную базу, за счет чего возникает внутреннее электрическое поле, которое ускоряет движение неосновных носителей заряда.

Фотодиоды с p–i–n структурой имеют большую толщину области, обедненной основными носителями, i–область имеет удельное сопротивление в 106…107 раз больше, чем сопротивление легированных областей n– и p–типов. К переходу можно прикладывать большие обратные напряжения, и однородное электрическое поле устанавливается по всей i–области. Падающее световое излучение поглощается i–областью, имеющей сильное электрическое поле, что способствует быстрому дрейфу носителей в соответствующие области.

У фотодиодов с барьером Шотки за счет минимального сопротивления базы и отсутствия процессов накопления и рассасывания избыточных зарядов достигается высокое быстродействие. У лавинных фотодиодов происходит лавинное размножение носителей в p–n переходе, и за счет этого резко возрастает чувствительность, их быстродействие составляет fгр = 1011…1012 Гц. Эти диоды считаются одними из перспективных элементов оптоэлектроники.

Параметры фотодиодов следующие:

1. Темновой ток IТ – начальный обратный ток, протекающий через диод при отсутствии внешнего смещения и светового излучения (10…20 мкА для германиевых и 1…2 мкА для кремниевых диодов).

2. Рабочее напряжение Up – номинальное напряжение, прикладываемое к фотодиоду в фотодиодном режиме (Up=10…30 В).

3. Интегральная чувствительность Sинт показывает, как изменяется фототок при единичном изменении светового потока:

. (8.8)

4. Граничная частота fгр – частота, на которой интегральная чувствительность уменьшается в раз (107…1012 Гц).

Не нашли то, что искали? Воспользуйтесь поиском:

Page 10

Фотодиоды – это полупроводниковые диоды, преобразующие световую энергию в энергию электрическую.

Обозначение:

Изготавливают фотодиоды из германия и кремния. Работает фотодиод при обратном включении.

Устройство:

P-n переход помещается в металлический корпус со стеклянным окном.

Принцип работы:

Принцип работы фотодиода основан на внутреннем и внешнем фотоэффекте. Когда диод не освещен, в цепи протекает обратный темновой ток небольшой величины . При освещении фотодиода происходит фотогенерация пар НЗ (т.е. возникает внутренний фотоэффект – валентные электроны, получив световую энергию фотонов, переходят из ВЗ в ЗП). Проводимость диода при этом возрастает, следовательно, возрастает обратный ток фотодиода до значения . Разность между световым и темновым токами называется фототоком:

Фотодиод может включаться в схему как с внешним источником питания (фотодиодный режим), так и без него (ве́нтильный режим).

(Используется при слабых световых (Используется при мощных

потоках) световых потоках, например,

солнечное излучение)

Рассмотрим фотодиодный режим:

p n

ННЗ Ө

ЕВН ННЗ

ЕВНЕШН

а) Пусть имеется поток фотонов с энергией . Образовавшиеся за счет фотогенерации НЗ диффундируют к переходу. Суммарное поле перехода ( ) является ускоряющим для ННЗ, поэтому ННЗ перебрасываются полем в соседние области, образуя световой ток .

б) Пусть освещение перехода отсутствует. В этом случае фотогенерация также будет отсутствовать, поэтому через переход суммарным полем будут перебрасываться в небольшом количестве ННЗ, образованные за счет генерации, и через диод будет протекать темновой ток небольшой величины.

Рассмотрим ве́нтильный режим:

В этом режиме будут происходить те же самые процессы, что и в фотодиодном режиме, только переброс ННЗ через переход будет осуществляться исключительно за счет внутреннего поля .

Применение фотодиодов:

· В вычислительной технике фотодиоды используют в устройствах ввода-вывода информации, т.к. фотодиоды обладают хорошей развязкой между входом и выходом (отсутствует электрическая связь между входом и выходом).

· В кино-, фото-аппаратуре.

· В оптронах в качестве фотоприёмников.

· Вентили – в качестве солнечных батарей.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 11

Светодиоды – это полупроводниковые диоды, преобразующие электрическую энергию в световую.

Обозначение:Пример: АЛ102Б, АЛ307А

Светодиоды работают при прямом включении.

Принцип работы:

Под действием прямого напряжения ОНЗ диффундируют в соседние области, где они рекомбинируют с зарядами противоположного знака. Рекомбинация сопровождается переходом электронов из ЗП в ВЗ. При этом выделяется энергия в виде квантов излучения .

W(эВ)

Ө

hv

Для получения видимого излучения, необходимо, чтобы ширина запрещенной зоны находилась в пределах: .

Отсюда видно, что германий и кремний для изготовления светодиодов непригодны, т.к. они имеют ширину запрещенной зоны меньшую, чем необходимо для видимого излучения ( ).

Для изготовления светодиодов применяется фосфид галлия (GaP), карбид кремния (SiC), тройные соединения, называемые твердыми растворами и состоящими из галлия, алюминия и мышьяка (Ga, Al, As) или галлия, мышьяка, фосфора (Ga, As, P).

Внесение в полупроводник некоторых примесей позволяет получить свечение различного цвета.

Кроме светодиодов, дающих видимое свечение, используются светодиоды инфракрасного излучения на основе арсенида галлия (GaAs), у которого . Они применяются в фотореле, различных датчиках, пультах, входят в состав некоторых оптронов.

Конструктивно светодиоды выполняются:

· В непрозрачных корпусах с линзой, обеспечивающей направленное излучение.

· В прозрачном пластмассовом корпусе, создающем рассеянное излучение.

· В бескорпусном варианте.

Применение:

Индикация, реле, датчики, пульты.

Оптрон

Оптрон – это полупроводниковый прибор, в котором конструктивно объединены фотоизлучатель и фотопроемник, между которыми существует оптическая связь.

В качестве фотоизлучателя может выступать светодиод, а в качестве фотоприемника фотодиод, фототранзистор, фототиристор.

Обозначение диодной пары: Тиристорная пара: Транзисторная пара:

Между фотоизлучателем и фотоприемником должна быть среда, которая играет роль световода. Световод должен быть прозрачен в рабочей области, обладать большим коэффициентом преломления, чтобы минимизировать потери света при многократном отражении от границ светодиода и световода.

Большое распространение получили волоконные световоды (тонкие нити стекла или пластмассы (волокна). Светопроводящие волокна покрывают светоизолирующими материалами и соединяют в многожильные световые кабели, проводящие свет подобно тому, как многожильные металлические кабели проводят электрический ток. С помощью волоконной оптики можно получить большое количество каналов для передачи оптической информации. Волокна световода можно изгибать и скручивать, причем каждое волокно все равно будет передавать свой оптический сигнал, например определенный элемент изображения.

Оптроны бывают с внутренней фотонной связью и с внешней фотонной связью.

Оптрон с внутренней фотонной связью:

1- Фотоизлучатель

2- Световод

3- Фотоприемник

Принцип работы: электрический сигнал поступает на фотоизлучатель (светодиод), где преобразуется в световой сигнал, который по световоду поступает на фотопремник. За счет внешнего фотоэффекта фотоприемник преобразует световой сигнал снова в электрический.

Данный оптрон осуществляет преобразование: электрический сигнал – оптический сигнал – электрический сигнал.

Применение:

· усиление электрических сигналов;

· обеспечение гальванической развязки между входом и выходом.

Оптрон с внешней фотонной связью:

4 – фотоприемник

5 – усилитель

6 – фотоизлучатель

Принцип действия: световой поток поступает на фотоприемник, где преобразуется в электрический сигнал, который усиливается усилителем и поступает на фотоизлучатель. В фотоизлучателе происходит обратный процесс (электрический сигнал преобразуется в световой).

Данный оптрон осуществляет преобразование: оптический сигнал – электрический сигнал – оптический сигнал.

Применение:

· усиление оптических сигналов;

· преобразование частоты оптических сигналов (на входе оптический сигнал одной частоты, на выходе – другой, например, сигнал инфракрасного или рентгеновского излучения преобразуется в сигнал видимого спектра).

Достоинства оптронов:

· отсутствие электрической связи между входом и выходом. Сопротивление изоляции между входом и выходом может достигать R=1014 Ом;

· широкая полоса пропускаемых частот (ПП=0÷1014Гц);

· высокая помехозащищенность оптического канала, т.е. его невосприимчивость к воздействию внешних электромагнитных полей;

· высокое быстродействие (используется в качестве переключателя).

Недостатки оптронов:

· большая потребляемая мощность из-за того, что дважды происходит преобразование энергии, причем КПД этих преобразований невысок;

· низкая температурная стабильность;

· низкая радиационная стойкость;

· заметное «старение», т.е. ухудшение параметров с течением времени;

· относительно высокий уровень собственных шумов.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 12

Биполярный транзистор – это полупроводниковый прибор с двумя взаимодействующими p-n переходами и тремя выводами.

Биполярным транзистор называется потому, что его работа основана на использовании носителей заряда обоих знаков (электронов и дырок).

Биполярные транзисторы бывают p-n-p и n-p-n проводимости. В транзисторах p-n-p проводимости стрелка направлена к базе, основными носителями заряда являются дырки. В транзисторах n-p-n проводимости стрелка направлена от базы, основными носителями заряда являются электроны. И в том, и в другом случае стрелка указывает направление эмиттерного тока.

Обозначение:

Если транзистор рассматривать как узловую точку, тогда справедлив 1-й закон Кирхгофа (сумма входящих токов равна сумме выходящих), т.е.:

– основное уравнение транзистора

Из этого выражения вытекает: - это максимальный ток транзистора.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 13

Эмиттер – осуществляет инжекцию ОНЗ в базу.

Инжекция – это введение основных носителей заряда в ту область, где они являются неосновными, при прямом включении перехода. Другими словами, инжекция - это интенсивная диффузия.

База – область, куда инжектируются эмиттером НЗ.

Коллектор – осуществляет экстракцию ННЗ.

Экстракция – это переброс ННЗ через переход ускоряющим полем.

Режимы работы транзистора

Биполярный транзистор имеет два p-n перехода: эмиттерный переход (ЭП) – переход между эмиттером и базой и коллекторный переход (КП) – переход между базой и коллектором.

Режим отсечки. К обоим переходам подводится обратное напряжение. В цепи транзистора текут небольшие неуправляемые токи. Транзистор полностью закрыт. Режим нерабочий.

Режим насыщения.Оба перехода находятся под прямым напряжением. Эмиттер и коллектор инжектируют НЗ в базу, поэтому ток базы – максимальный. Транзистор полностью открыт, но при этом неуправляем (выходной ток не регулируется входным током). Режим нерабочий.

Активный (рабочий) режим. ЭП находится под прямым напряжением, а КП – под обратным. Эмиттер инжектирует ОНЗ в базу, где они становятся ННЗ и подвергаются экстракции в коллектор.

Инверсный режим. Транзистор – прибор обратимый. К ЭП подводится обратное напряжение, а к КП – прямое, т.е. эмиттер и коллектор меняются ролями. Режим нерабочий (не соответствует нормальным условиям эксплуатации транзистора, т.к. эмиттер и коллектор имеют разные размеры и обладают разными электрофизическими свойствами).

Режимы отсечки, насыщения и инверсный используется в цифровых схемах, активный режим используется в аналоговых схемах.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 14

p ЭП n КП p

IЭР IКР

ЭК

IЭ IЭn IРЕК IКБО IК

ЕВН

IЭБ IК

IБ ЕВНЕШН

+ IБ +

UПР UОБР

Пусть транзистор находится в активном (рабочем) режиме, т.е. на ЭП подано прямое напряжение, а на КП – обратное.

При этом возникает инжекция дырок из эмиттера в базу, в обратном направлении будет происходить инжекция электронов. Ток, проходящий через ЭП, равен сумме дырочной и электронной составляющих: .

Т.к. концентрация ОНЗ в эмиттере много больше концентрации ОНЗ в базе, то инжекция дырок будет преобладать над инжекцией электронов, т.е. .

Пришедшие в базу дырки начинают рекомбинировать с электронами. Но рекомбинация – процесс не мгновенный. Поэтому бо́льшая часть дырок успевает пройти через тонкий слой базы и достигнуть КП.Суммарное поле КП ( ) является ускоряющим для дырок, поэтому дырки перебрасываются этим полем через КП (происходит экстракция ННЗ) и участвуют в образовании дырочной составляющей коллекторного тока (управляемая часть коллекторного тока). Т.к. КП находится под обратным напряжением, через него протекает еще один ток – неуправляемый тепловой ток коллекторного перехода . Суммарный ток коллектора равен: . Т.к. тепловой ток мал, то .

Те дырки, которые всё же успевают прорекомбинировать с электронами в базе, участвуют в создании тока рекомбинации .

Таким образом, суммарный ток базы равен:

Все составляющие этого тока малы, следовательно, ток базы также мал.

Рекомбинация в базе + инжекция электронов из базы в эмиттер нарушают электрическую нейтральность базы (база приобретает положительный заряд). Для восстановления электрической нейтральности базы от внешнего источника питания ( ) в базу поступают электроны. Т.к. ток всегда направлен в сторону, противоположную движению электронов, токи и имеют направление сверху вниз, следовательно, ток базы имеет такое же направление.

Пришедшие в эмиттер из базы электроны и ушедшие из эмиттера дырки нарушают электрическую нейтральность эмиттера (эмиттер приобретает отрицательный заряд). Для восстановления нейтральности эмиттера избыточные электроны уходят из эмиттера к внешнему источнику питания ( ), т.е. во внешней эмиттерной цепи протекает ток снизу вверх.

Пришедшие в коллектор дырки нарушают его электрическую нейтральность(коллектор приобретает положительный заряд). Для восстановления электрической нейтральности в коллектор поступают электроны от внешнего источника питания ( ), т.е. во внешней коллекторной цепи протекает ток сверху вниз.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 15

· Статический коэффициент передачи тока эмиттера в коллектор: или

Отсюда вытекает: транзистор является управляемым прибором, т.к. его выходной ток ( ) зависит от входного ( ).

Чем ближе приближается к 1, тем меньше отличаются между собой токи и , тем эффективнее работает транзистор.

· Статический коэффициент передачи тока базы в коллектор:

= десятки÷сотни

Не нашли то, что искали? Воспользуйтесь поиском:

Page 16

Т.к. выходное напряжение транзистора является обратным , а входное напряжение – прямым , то справедливо: .

При этом входной ток выходному току :

или .

Определим входную и выходную мощности:

, т.е. транзистор является усилительным элементом.

Прибор, усиливающий сигнал по мощности, называется усилителем.

Схемы включения транзисторов

В зависимости от того, какой из электродов транзистора является общим для входной и выходной цепей, различают три схемы включения транзисторов:

Не нашли то, что искали? Воспользуйтесь поиском:

Page 17

Изображена теоретическая схема усилителя. Практически используется один источник питания, а не два.

Назначение элементов:

VT – усилительный элемент;

Еп – источник питания, подающий обратное напряжение на КП;

Есм – источник питания, подающий прямое напряжение на ЭП;

Uс – источник переменного сигнала;

Rк – сопротивление коллекторной нагрузки (на нем выделяется усиленный сигнал).

Не нашли то, что искали? Воспользуйтесь поиском:

Page 18

n – p – n

Э Б К

ЭП (UПР)

 
 

КП (UОБР)

ЭП должен находиться под прямым напряжением. При прямом напряжении знаки клемм источника питания и ОНЗ соответствующих областей должны совпадать. Эмиттер – это n-область, поэтому на него должен быть подан «минус» источника питания Есм, а на базу, соответственно, - «плюс».

КП должен находиться под обратным напряжением. При обратном напряжении знаки клемм источника питания и ОНЗ соответствующих областей должны быть противоположны. Коллектор – это n-область, поэтому на него должен быть подан «плюс» источника питания Еп.

Б) Общая база (n-p-n)

Не нашли то, что искали? Воспользуйтесь поиском:

Page 19

RЭ- сопротивление эмиттерной нагрузки.

Для переменного тока источник постоянного напряжения (ЕП) имеет внутреннее сопротивление, стремящееся к нулю, поэтому можно считать, что плюсовая и минусовая клеммы этого источника для переменного тока закорочены, т.е. коллектор соединён с корпусом, что и требуется для схемы ОК.

Статические характеристики биполярного транзистора

Не нашли то, что искали? Воспользуйтесь поиском:

Page 20

Входные характеристики транзистора ОБ - это зависимость входного тока от входного напряжения при постоянном выходном напряжении, т.е. при , где f - этофункция.

IЭ, mA

UКБ=5В UКБ=0

UЭБ, В

0 1

Если использовать выходное напряжение >5В, то входные характеристики незначительно сместятся влево, (пойдут кучно), поэтому чтобы не загромождать рисунок, ограничиваются двумя характеристиками: при и при . При этом погрешность будет незначительной, ею можно пренебречь.

Выходные характеристики транзистора ОБ - это зависимость выходного тока от выходного напряжения при постоянном входном токе, т.е. при

насыщение

0

Не нашли то, что искали? Воспользуйтесь поиском:

Page 21

Входные характеристики транзистора ОЭ – это зависимость входного тока от входного напряжения при постоянном выходном напряжении, т.е.

при

IБ,mA UКЭ =0 UКЭ=5В

UБЭ, В

0 1

Если использовать выходное напряжение >5В, то входные характеристики незначительно сместятся вправо, (пойдут кучно), поэтому чтобы не загромождать рисунок, ограничиваются двумя характеристиками: при и при . При этом погрешность будет незначительной, ею можно пренебречь.

Выходные характеристики транзистора ОЭ - зависимость выходного тока от выходного напряжения при постоянном входном токе, т.е. при

IК, mA

IБ3

насыщение IБ2

IБ1 IБ3 > IБ2 > IБ1

IКЭО IБ=0

отсечка UКЭ, В

3.1.9 Динамический режим работы транзистора

Динамический режим работы транзистора – это режим, при котором во входной цепи имеется источник переменного сигнала, а в выходной цепи присутствует сопротивление нагрузки.

2-й закон Кирхгофа для выходной цепи:

Данное выражение является уравнением выходной динамической характеристики (уравнением нагрузочной прямой).

Нагрузочная прямая строится на семействе выходных статических вольт-амперных характеристик по двум точкам (А и В):

а) Пусть транзистор полностью закрыт (режим отсечки), т.е. . Тогда из уравнения (11) получим .

Таким образом, координаты точки А будут:

б) Пусть транзистор полностью открыт (режим насыщения), т.е. . Тогда из уравнения (11) получим .

Таким образом, координаты точки В будут:

IК, mA IБ4

ЕП/RК B IБ3

IБ2

нагрузочная IБ1

прямая (выходная AIБ=0

динамическая 0 ЕП UКЭ,В

характеристика)

Выходная динамическая характеристика транзистора отличается от статических выходных ВАХ, т.к. наличие сопротивления нагрузки резко изменяет режим работы транзистора.

В качестве входной динамической характеристики используют входную статическую характеристику транзистора при , т.к. они мало чем отличаются вследствие того, что сопротивление нагрузки слабо влияет на входную цепь. IБ,mA

UКЭ=5В

входная динамическая

характеристика

0 1В UБЭ,В

Не нашли то, что искали? Воспользуйтесь поиском:

Page 22

Анализировать схему, содержащую нелинейный элемент (например, транзистор), сложно. Но при определенных условиях транзистор можно заменить эквивалентной схемой, содержащей исключительно линейные элементы (сопротивления, емкости, индуктивности).

Условием замены реального транзистора эквивалентной схемой является малый уровень входного сигнала, т.к. при малых амплитудах входного сигнала можно пренебречь нелинейностью ВАХ и считать малые участки ВАХ линейными.

Эквивалентная схема составляется только для переменных составляющих токов и напряжений, поскольку полезную информацию несут только они.

Элементы, образующие эквивалентную схему транзистора, и являются его первичными параметрами.

Эквивалентных схем транзистора много, рассмотрим одну из них.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 23

· - генератор тока (учитывает усилительные свойства транзистора). Вместо генератора тока можно использовать генератор напряжения , соединенный последовательно с :

· - дифференциальное сопротивление прямо смещенного эмиттерного перехода (ЭП)

=доли Ома÷единицы Ома, т.е. мало

· - ёмкость ЭП. Эта ёмкость диффузионная (т.к. ЭП смещен в прямом направлении). Она относительно большая ( десятки пФ), но её влиянием можно пренебречь, т.к. она шунтирована малым сопротивлением прямо смещенного эмиттерного перехода .

· - дифференциальное сопротивление обратно смещенного коллекторного перехода (КП)

- может достигать сотен кОм÷десятки МОм, т.е. велико.

· - ёмкость КП. Эта ёмкость барьерная (т.к. КП смещен в обратном направлении). Она мала ( единицы пФ), но пренебрегать ею нельзя. На ВЧ реактивное сопротивление этой емкости уменьшается ( ), в результате чего часть выходного тока ответвляется через эту емкость и поступает на вход транзистора, не попадая в нагрузку, т.е. не участвуя в усилении. Другими словами: с помощью барьерной ёмкости на ВЧ в транзисторе осуществляется внутренняя обратная связь.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 24

Полевые транзисторы – это полупроводниковые приборы с управляемым каналом для тока ОНЗ.

Полевой транзистор содержит 3 электрода:

· Исток – электрод, через который в канал втекают НЗ, создающие ток канала;

· Сток – электрод, через который НЗ вытекают из канала;

· Затвор – управляющий электрод, регулирующий поток НЗ в канале.

Полевой транзистор относится к однополярным транзисторам, т.к. в нем используется движение НЗ только одного знака (через канал движутся либо электроны, либо дырки).

НЗ в полевом транзисторе движутся от Истока к Стоку через канал под действием продольного электрического поля, создаваемого напряжением .

Затвор управляет величиной тока канала с помощью поперечного электрического поля, создаваемого напряжением .

Наличие этих 2-х полей объясняет название “полевой транзистор”.

Полевые транзисторы бывают:

 
 

               
   
   
 
 
   
 
 

Не нашли то, что искали? Воспользуйтесь поиском:

Page 25

L – длина канала; d – толщина канала

На кремниевой подложке p+-типа создается тонкий слой n-типа, выполняющий функцию канала. Канал – слаболегированная область. На концах канала создают сильнолегированные (низкоомные) n+-области Истока и Стока. Эти области делают низкоомными, чтобы уменьшить потери полезного сигнала (на малом сопротивлении будет и малое падение полезного напряжения). Область Затвора (p+-область) также является сильнолегированной. Подложка используется как второй Затвор или подключается к Затвору.

Рассмотренный полевой транзистор имеет n-канал, существуют транзисторы с p-каналом.

Обозначение:

Принцип действия полевого транзистора

Не нашли то, что искали? Воспользуйтесь поиском:

Page 26

На Сток подается положительный потенциал относительно Истока. Считаем, что . Под действием этого напряжения ОНЗ (электроны) движутся от Истока к Стоку, образуя ток канала .

Для эффективной работы транзистора p-n переходы, с помощью которых происходит управление этим током, должны быть смещены в обратном направлении. При подключении к переходам обратного напряжения (минус на Затворе, плюс на Истоке) переходы расширяются, следовательно, канал сужается, и ток канала уменьшается. Таким образом, изменяя напряжение на Затворе , можно управлять током канала.

При определенном напряжении произойдет смыкание переходов, и ток канала станет равным нулю – транзистор запирается.

Характерным для полевого транзистора является очень малый ток в цепи Затвора (Затвор образует с каналом обратно смещенный переход, обладающий большим сопротивлением). В электрических схемах Затвор обычно является входным электродом, поэтому полевой транзистор обладает высоким входным сопротивлением: – достоинство.

Не нашли то, что искали? Воспользуйтесь поиском:


Смотрите также